0000000001109239

AUTHOR

Carlos R. Osorio

Photobacterium damselae subsp. damselae Major Virulence Factors Dly, Plasmid-Encoded HlyA, and Chromosome-Encoded HlyA Are Secreted via the Type II Secretion System

ABSTRACT Photobacterium damselae subsp. damselae is a marine bacterium that causes septicemia in marine animals and in humans. Previously, we had determined a major role of pPHDD1 plasmid-encoded Dly (damselysin) and HlyA (HlyA pl ) and the chromosome-encoded HlyA (HlyA ch ) hemolysins in virulence. However, the mechanisms by which these toxins are secreted remain unknown. In this study, we found that a mini-Tn 10 transposon mutant in a plasmidless strain showing an impaired hemolytic phenotype contained an insertion in epsL , a component of a type II secretion system (T2SS). Reconstruction of the mutant by allelic exchange confirmed the specific involvement of epsL in HlyA ch secretion. In…

research product

Phobalysin, a Small β-Pore-Forming Toxin of Photobacterium damselae subsp. damselae

ABSTRACT Photobacterium damselae subsp. damselae , an important pathogen of marine animals, may also cause septicemia or hyperaggressive necrotizing fasciitis in humans. We previously showed that hemolysin genes are critical for virulence of this organism in mice and fish. In the present study, we characterized the hlyA gene product, a putative small β-pore-forming toxin, and termed it phobalysin P (PhlyP), for “photobacterial lysin encoded on a plasmid.” PhlyP formed stable oligomers and small membrane pores, causing efflux of K + , with no significant leakage of lactate dehydrogenase but entry of vital dyes. The latter feature distinguished PhlyP from the related Vibrio cholerae cytolysin…

research product

The emergence of Vibrio pathogens in Europe : ecology, evolution, and pathogenesis (Paris, 11-12th March 2015)

Global change has caused a worldwide increase in reports of Vibrio-associated diseases with ecosystem-wide impacts on humans and marine animals. In Europe, higher prevalence of human infections followed regional climatic trends with outbreaks occurring during episodes of unusually warm weather. Similar patterns were also observed in Vibrio-associated diseases affecting marine organisms such as fish, bivalves and corals. Basic knowledge is still lacking on the ecology and evolutionary biology of these bacteria as well as on their virulence mechanisms. Current limitations in experimental systems to study infection and the lack of diagnostic tools still prevent a better understanding of Vibrio…

research product

The emergence of Vibrio pathogens in Europe: ecology, evolution, and pathogenesis

Global change has caused a worldwide increase in reports of Vibrio-associated diseases with ecosystem-wide impacts on humans and marine animals. In Europe, higher prevalence of human infections followed regional climatic trends with outbreaks occurring during episodes of unusually warm weather. Similar patterns were also observed in Vibrio-associated diseases affecting marine organisms such as fish, bivalves and corals. Basic knowledge is still lacking on the ecology and evolutionary biology of these bacteria as well as on their virulence mechanisms. Current limitations in experimental systems to study infection and the lack of diagnostic tools still prevent a better understanding of Vibrio…

research product

Chromosome-Encoded Hemolysin, Phospholipase, and Collagenase in Plasmidless Isolates of Photobacterium damselae subsp. damselae Contribute to Virulence for Fish.

ABSTRACT Photobacterium damselae subsp. damselae is a pathogen of marine animals, including fish of importance in aquaculture. The virulence plasmid pPHDD1, characteristic of highly hemolytic isolates, encodes the hemolysins damselysin (Dly) and phobalysin (PhlyP). Strains lacking pPHDD1 constitute the vast majority of the isolates from fish outbreaks, but genetic studies to identify virulence factors in plasmidless strains are scarce. Here, we show that the chromosome I-encoded hemolysin PhlyC plays roles in virulence and cell toxicity in pPHDD1-negative isolates of this pathogen. By combining the analyses of whole genomes and of gene deletion mutants, we identified two hitherto uncharacte…

research product