0000000001109569

AUTHOR

G. Kosmadakis

Techno-economic evaluation of Reverse Electrodialysis process in different real environments

Salinity Gradient Power is a promising renewable energy source based on the recovery of the chemical potential released from the mixing of solutions at different concentrations. Natural salinity gradients are extensively available worldwide in natural reservoirs. Reverse Electrodialysis is an innovative technology able to perform a direct conversion of the energy of mixing into electricity. Salinity gradients coming from natural resources or from human activities are worldwide available. In the present work a number of different scenarios, including natural resources (e.g. rivers, seas, lakes and salt ponds), industrial/urban wastes (e.g. brine and treated wastewaters) are analysed. The aim…

research product

Towards the first proof of the concept of a Reverse ElectroDialysis - Membrane Distillation Heat Engine

Abstract The coupling of Reverse Electrodialysis with Membrane Distillation is a promising option for the conversion of waste heat into electricity. This study evaluates the performances of the integrated system under different operating conditions, employing validated model and correlations. This work provides a detailed description of the behaviour of a real RED-MD heat engine and indicates the set of inlet concentrations, velocities and equipment size which returns the highest cycle exergy efficiency. These operating conditions were selected for the pilot plant developed within the EU-funded project RED Heat to Power. For the first time, a perspective analysis was also included, consider…

research product

Application of reverse electrodialysis to site-specific types of saline solutions: A techno-economic assessment

Abstract Salinity gradients are a non-conventional source of renewable energy based on the recovery of the Gibbs free energy related to the mixing of solutions at different concentrations. Reverse Electrodialysis is a promising and innovative technology able to convert this energy directly into electric current. The worldwide availability of salinity gradients is limited to those locations where water bodies at different salinity levels are present. The present work analyses a number of different scenarios worldwide, in locations where salinity gradients are naturally available or generated by anthropogenic activities. A techno-economic model of the Reverse Electrodialysis process is presen…

research product

Boosting the performance of a Reverse Electrodialysis – Multi-Effect Distillation Heat Engine by novel solutions and operating conditions

Abstract This work presents a performance analysis of a waste-heat-to-power Reverse Electrodialysis Heat Engine (RED-HE) with a Multi-Effect Distillation (MED) unit as the regeneration stage. The performance of the system is comparatively evaluated using two different salts, sodium chloride and potassium acetate, and investigating the impact of different working solutions concentration and temperature in the RED unit. For both salt solutions, the impact of membrane properties on the system efficiency is analysed by considering reference ionic exchange membranes and high-performing membranes. Detailed mathematical models for the RED and MED units have been used to predict the thermal efficie…

research product

Reverse electrodialysis heat-engine: Case studies of improving energy efficiency through recovery of low temperature excess heat

Reverse Electrodialysis (RED) is a technology for generating electricity from the difference in salinity between two solutions. RED is usually applied to natural water streams with different salinities, like seawater vs. freshwater. In the RED Heat-to-Power project we explore the option of using artificial water solutions operating in a closed loop where the difference in salinity is regenerated in a separation step powered by heat at temperature ranges between 60 and 100°C. We call this system Reverse Electrodialysis Heat Engine (RED HE). In this paper, first we summarise the possible system configurations and the overall amount of excess heat available in Europe for powering the RED HE pr…

research product

Evaluation of the Economic and Environmental Performance of Low-Temperature Heat to Power Conversion using a Reverse Electrodialysis – Multi-Effect Distillation System

In the examined heat engine, reverse electrodialysis (RED) is used to generate electricity from the salinity difference between two artificial solutions. The salinity gradient is restored through a multi-effect distillation system (MED) powered by low-temperature waste heat at 100 °C. The current work presents the first comprehensive economic and environmental analysis of this advanced concept, when varying the number of MED effects, the system sizing, the salt of the solutions, and other key parameters. The levelized cost of electricity (LCOE) has been calculated, showing that competitive solutions can be reached only when the system is at least medium to large scale. The lowest LCOE, at a…

research product

EVALUATING THE FACTORS AFFECTING THE BREAK-EVEN COST OF ON-SITE PV GENERATION AT INDUSTRIAL UNITS

33rd European Photovoltaic Solar Energy Conference and Exhibition; 2870-2874

research product

Correlations for estimating the specific capital cost of multi-effect distillation plants considering the main design trends and operating conditions

Abstract This work proposes a correlation for the specific capital cost of multi-effect distillation (MED) plants, considering their main design options and parameters, such as the number of effects, size/capacity, and heat source temperature. These parameters are varied within a large range to cover as many different cases as possible. The cost correlation decouples the evaporator cost and includes in the expression the ratio of the heat exchanger area to a reference one. This area is calculated using a validated MED numerical model, with the results then processed to produce fitted expressions. Two versions of this correlation with different levels of complexity are proposed, which provid…

research product