Alkylation at the active site of the D-3-hydroxybutyrate dehydrogenase (BDH), a membrane phospholipid-dependent enzyme, by 3-chloroacetyl pyridine adenine dinucleotide (3-CAPAD)
The structure of the rat liver's D-3-hydroxybutyrate dehydrogenase (BDH) active site has been investigated using an affinity alkylating reagent, the 3-chloroacetyl pyridine adenine dinucleotide (3-CAPAD). This NAD+ analogue reagent strongly inactivates the enzyme following a concentration- and time-dependent process with a stoichiometry of approximately 1. The reagent reacts at the coenzyme binding site as revealed by the efficient protection by NADH. The effect of 3-CAPAD is stronger with the enzyme into its natural membrane environment than with the lipid-free purified apoBDH or with the reconstituted apoBDH-mitochondrial phospholipid complex. The pH-dependent effect on the inactivation p…