0000000001112790

AUTHOR

David K. Smith

0000-0002-9881-2714

showing 3 related works from this author

Self-assembled multivalent (SAMul) ligand systems with enhanced stability in the presence of human serum

2019

Self-assembled cationic micelles are an attractive platform for binding biologically-relevant polyanions such as heparin. This has potential applications in coagulation control, where a synthetic heparin rescue agent could be a useful replacement for protamine, which is in current clinical use. However, micelles can have low stability in human serum and unacceptable toxicity profiles. This paper reports the optimi- sation of self-assembled multivalent (SAMul) arrays of amphiphilic ligands to bind heparin in competitive conditions. Specifically, modification of the hydrophobic unit kinetically stabilises the self-assembled nanostructures, preventing loss of binding ability in the presence of…

02 engineering and technologyheparinLigands01 natural sciencesMicelleGeneral Materials ScienceMicellesnanomaterialsMolecular StructurenanotechnologybiologyChemistrybiomaterialself-assemblyHeparinsimulation021001 nanoscience & nanotechnologyCholesterolhydrolysisThermodynamics0210 nano-technologyHydrophobic and Hydrophilic Interactionsbiomaterialsmedicine.drugBiocompatibilityCell Survivalmicellesexperimental characterizationserum albuminBiomedical EngineeringSerum albuminself-assembly; nanotechnology; biomaterials; simulation; experimental characterization010402 general chemistrySurface-Active Agentsthermodynamicsbiocompatibilitytoxicity testingAmphiphilemedicineHumansMTT assaycoagulationhydrophobicityHeparinLigandligandscholesteroltoxicitybinding capacityProtaminemolecular dynamicsNanostructures0104 chemical sciencesKineticsblood serumbiology.proteinBiophysicshuman cell linesanions
researchProduct

Probing the Gelation Synergies and Anti-Escherichia coli Activity of Fmoc-Phenylalanine/Graphene Oxide Hybrid Hydrogel

2023

The N-fluorenyl-9-methyloxycarbonyl (Fmoc)-protected amino acids have shown high antimicrobial application potential, among which the phenylalanine derivative (Fmoc-F) is the most well-known representative. However, the activity spectrum of Fmoc-F is restricted to Gram-positive bacteria only. The demand for efficient antimicrobial materials expanded research into graphene and its derivatives, although the reported results are somewhat controversial. Herein, we combined graphene oxide (GO) flakes with Fmoc-F amino acid to form Fmoc-F/GO hybrid hydrogel for the first time. We studied the synergistic effect of each component on gelation and assessed the material’s bactericidal activity on Gram…

hyytyminenpeptiditGeneral Chemical EngineeringpeptidesgelationproteiinitGeneral ChemistryhydrogeelitbacteriamonomershydrogelsproteinsbakteeritACS Omega
researchProduct

Triggering a transient organo-gelation system in a chemically active solvent

2021

A transient organo-gelation system with spatiotemporal dynamic properties is described. Here, the solvent actively controls a complex set of equilibria that underpin the dynamic assembly event. The observed metastability is due to the in situ formation of a secondary solvent, acting as an antagonist against the primary solvent of the organogel. peerReviewed

geelitPhysics::Biological PhysicsQuantitative Biology::BiomoleculesChemistryEvent (relativity)Metals and AlloysGeneral ChemistryCatalysisSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsSolventliukeneminenCondensed Matter::Soft Condensed MatterChemical physicstermodynamiikkaMetastabilityMaterials ChemistryCeramics and CompositesTransient (oscillation)Physics::Chemical Physicsorgaaniset yhdisteet
researchProduct