0000000001112801

AUTHOR

P. Cerda-duran

showing 3 related works from this author

Calibration of advanced Virgo and reconstruction of the gravitational wave signal h(t) during the observing run O2

2018

In August 2017, Advanced Virgo joined Advanced LIGO for the end of the O2 run, leading to the first gravitational waves detections with the three-detector network. This paper describes the Advanced Virgo calibration and the gravitational wave strain h(t) reconstruction during O2. The methods are the same as the ones developed for the initial Virgo detector and have already been described in previous publications, this paper summarizes the differences and emphasis is put on estimating systematic uncertainties. Three versions of the h(t) signal have been computed for the Virgo O2 run, an online version and two post-run reprocessed versions with improved detector calibration and reconstruction…

O2 observation runPhysics and Astronomy (miscellaneous)AstronomyAstrophysicsdetector: networkVIRGO: calibration01 natural sciencesGeneral Relativity and Quantum CosmologyPhysics Particles & FieldsHigh Energy Physics::Theorydetector: calibrationLIGOmirrorgravitational wavePhysicsQuantum Science & TechnologyPhysicsDetectorphotonAstrophysics::Instrumentation and Methods for AstrophysicsReconstruction algorithmMassless particleAmplitudeCalibration Advanced Virgo O2Physical SciencesCalibration[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]Advanced VirgoAstrophysics - Instrumentation and Methods for Astrophysicson-linereconstructioninterferometergravitational wave calibration reconstruction photon calibrator Virgo O2 observation runPhysics MultidisciplinaryFOS: Physical sciencesO2General Relativity and Quantum Cosmology (gr-qc)Astronomy & Astrophysicsgravitational radiation: direct detectionParticle detectorGeneral Relativity and Quantum Cosmology0103 physical sciencesCalibrationcalibration; gravitational wave; O2 observation run; photon calibrator; reconstruction; Virgo; Physics and Astronomy (miscellaneous)[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)Science & Technology010308 nuclear & particles physicsGravitational waveVirgogravitational radiationcalibration; gravitational wave; O2 observation run; photon calibrator; reconstruction; Virgocalibrationphoton calibratorLIGOgravitational radiation detectordetector: sensitivity* Automatic Keywords *network
researchProduct

Deep learning for multimessenger core-collapse supernova detection

2020

The detection of gravitational waves from core-collapse supernova (CCSN) explosions is a challenging task, yet to be achieved, in which it is key the connection between multiple messengers, including neutrinos and electromagnetic signals. In this work, we present a method for detecting these kind of signals based on machine learning techniques. We tested its robustness by injecting signals in the real noise data taken by the Advanced LIGO-Virgo network during the second observation run, O2. We trained a newly developed Mini-Inception Resnet neural network using time-frequency images corresponding to injections of simulated phenomenological signals, which mimic the waveforms obtained in 3D n…

FOS: Physical sciencesAstrophysics - Instrumentation and Methods for AstrophysicsInstrumentation and Methods for Astrophysics (astro-ph.IM)
researchProduct

Search for GW signals associated with GRBs

2021

We present the results of targeted searches for gravitational-wave transients associated with gamma-ray bursts during the second observing run of Advanced LIGO and Advanced Virgo, which took place from 2016 November to 2017 August. We have analyzed 98 gamma-ray bursts using an unmodeled search method that searches for generic transient gravitational waves and 42 with a modeled search method that targets compact-binary mergers as progenitors of short gamma-ray bursts. Both methods clearly detect the previously reported binary merger signal GW170817, with p-values of <9.38x10^-6^ (modeled) and 3.1x10^-4^ (unmodeled). We do not find any significant evidence for gravitational-wave signals assoc…

Astrophysics and AstronomyGamma-ray astronomyhigh energy astrophysicsAstrophysics::High Energy Astrophysical PhenomenaPhysicsAstrophysics::Cosmology and Extragalactic Astrophysicsstellar astronomyGamma ray burstsGravitational wavesCosmologyobservational astronomyGamma ray astronomyGamma-ray burstsAstrophysical ProcessesNatural Sciences
researchProduct