Precision exercise medicine: predicting unfavourable status and development in the 20-m shuttle run test performance in adolescence with machine learning
Objectives: To assess the ability to predict individual unfavourable future status and development in the 20m shuttle run test (20MSRT) during adolescence with machine learning (random forest (RF) classifier). Methods: Data from a 2-year observational study (2013‒2015, 12.4±1.3 years, n=633, 50% girls), with 48 baseline characteristics (questionnaires (demographics, physical, psychological, social and lifestyle factors), objective measurements (anthropometrics, fitness characteristics, physical activity, body composition and academic scores)) were used to predict: (Task 1) unfavourable future 20MSRT status (identification of individuals in the lowest 20MSRT tertile after 2 years), and (Task…