0000000001118068
AUTHOR
Stefania Rizzuti
On the effectiveness of Finite Element simulation of orthogonal cutting with particular reference to temperature prediction
Abstract Finite Element simulation of orthogonal cutting is nowadays assuming a large relevance; in fact a very large number of papers may be found out in technical literature on this topic. In recent years, numerical simulation was performed to investigate various phenomena such as chip segmentation, force prediction and tool wear. On the other hand, some drawbacks have to be highlighted; due to the geometrical and computational complexity of the updated-Lagrangian formulation mostly used in FE codes, a cutting time of only a few milliseconds can be effectively simulated. Therefore, steady-state thermal conditions are not reached and the simulation of the thermal phenomenon may be ineffect…
DEPENDENCE OF MACHINING SIMULATION EFFECTIVENESS ON MATERIAL AND FRICTION MODELLING
Numerical simulation of cutting processes is still a very difficult matter, although some relevant geometrical simplifications and high-performance codes are used. A large number of technical papers have been focused on the predictive capability of the codes: nevertheless the prediction quality is not very satisfactory if the problem is analyzed in a wide sense. In this paper the simple orthogonal cutting process of a plain-carbon steel is investigated taking into account different process conditions (cutting speed and feed rate). Furthermore, four material constitutive equations and three friction models were implemented and a sensitivity analysis was carried out comparing the numerical pr…