0000000001119574

AUTHOR

K. Kreim

showing 25 related works from this author

Evidence for Increased neutron and proton excitations between 51−63 Mn

2015

The hyperfine structures of the odd-even 51−63Mnatoms (N=26 −38) were measured using bunched beam collinear laser spectroscopy at ISOLDE, CERN. The extracted spins and magnetic dipole moments have been compared to large-scale shell-model calculations using different model spaces and effective interactions. In the case of 61,63Mn, the results show the increasing importance of neutron excitations across the N=40subshell closure, and of proton excitations across the Z=28shell gap. These measurements provide the first direct proof that proton and neutron excitations across shell gaps are playing an important role in the ground state wave functions of the neutron-rich Mn isotopes. publisher: Els…

Nuclear and High Energy PhysicsProtonNuclear TheoryMagnetic dipole momentsMagnetic dipole momentNuclear Physics - ExperimentNeutronPhysics::Atomic PhysicsNuclear ExperimentWave functionHyperfine structurePhysicsManganeseta114SpinsMagnetic momentMagnetic dipole moment; Manganese; Spin determination; Nuclear and High Energy Physicsmangaanilcsh:QC1-999Spin determinationPhysics::Accelerator PhysicsPräzisionsexperimente - Abteilung BlaumAtomic physicsGround stateMagnetic dipolelcsh:PhysicsPhysics Letters B
researchProduct

Nuclear Charge Radius ofBe12

2012

The nuclear charge radius of $^{12}\mathrm{Be}$ was precisely determined using the technique of collinear laser spectroscopy on the $2{s}_{1/2}\ensuremath{\rightarrow}2{p}_{1/2,3/2}$ transition in the ${\mathrm{Be}}^{+}$ ion. The mean square charge radius increases from $^{10}\mathrm{Be}$ to $^{12}\mathrm{Be}$ by $\ensuremath{\delta}⟨{r}_{c}^{2}{⟩}^{10,12}=0.69(5)\text{ }\text{ }{\mathrm{fm}}^{2}$ compared to $\ensuremath{\delta}⟨{r}_{c}^{2}{⟩}^{10,11}=0.49(5)\text{ }\text{ }{\mathrm{fm}}^{2}$ for the one-neutron halo isotope $^{11}\mathrm{Be}$. Calculations in the fermionic molecular dynamics approach show a strong sensitivity of the charge radius to the structure of $^{12}\mathrm{Be}$. Th…

Physics010308 nuclear & particles physicsGeneral Physics and AstronomyCharge densityRadius7. Clean energy01 natural sciencesEffective nuclear charge3. Good healthIonAtomic radiusCharge radius0103 physical sciencesSensitivity (control systems)Atomic physics010306 general physicsSpectroscopyPhysical Review Letters
researchProduct

Nuclear mean-square charge radii of63,64,66,68−82Ga nuclei: No anomalous behavior atN=32

2012

Collinear laser spectroscopy was performed on the ${}^{63,64,66,68\ensuremath{-}82}$Ga isotopes with neutron numbers from $N=32$ to $N=51$. These measurements were carried out at the ISOLDE radioactive ion beam facility at CERN. Here we present the nuclear mean-square charge radii extracted from the isotope shifts and, for the lighter isotopes, new spin and moment values. New ground-state nuclear spin and moments were extracted from the hyperfine spectra of ${}^{63,70}$Ga, measured on an atomic transition in the neutral atom. The ground-state spin of ${}^{63}$Ga is determined to be $I=3/2$. Analysis of the trend in the change in mean-square charge radii of the gallium isotopes demonstrates …

PhysicsNuclear and High Energy PhysicsIsotope010308 nuclear & particles physicschemistry.chemical_elementCharge (physics)7. Clean energy01 natural sciencesSpectral linechemistry0103 physical sciencesNeutronPhysics::Atomic PhysicsAtomic physicsGalliumNuclear Experiment010306 general physicsSpin (physics)SpectroscopyHyperfine structurePhysical Review C
researchProduct

Spins and Magnetic Moments ofK49andK51: Establishing the1/2+and3/2+Level Ordering BeyondN=28

2013

The ground-state spins and magnetic moments of $^{49,51}\mathrm{K}$ have been measured using bunched-beam high-resolution collinear laser spectroscopy at ISOLDE CERN. For $^{49}\mathrm{K}$ a ground-state spin $I=1/2$ was firmly established. The observed hyperfine structure of $^{51}\mathrm{K}$ requires a spin $Ig1/2$ and strongly suggests $I=3/2$. From its magnetic moment $\ensuremath{\mu}(^{51}\mathrm{K})=+0.5129(22){\ensuremath{\mu}}_{N}$ a spin-parity ${I}^{\ensuremath{\pi}}=3/{2}^{+}$ with a dominant $\ensuremath{\pi}1{d}_{3/2}^{\ensuremath{-}1}$ hole configuration was deduced. This establishes for the first time the reinversion of the single-particle levels and illustrates the prominen…

PhysicsCondensed matter physicsMagnetic momentSpins010308 nuclear & particles physicsSHELL modelMagnetic monopoleGeneral Physics and Astronomy01 natural sciences0103 physical sciences010306 general physicsSpectroscopyNuclear theoryHyperfine structureSpin-½Physical Review Letters
researchProduct

Simple Nuclear Structure inCd111–129from Atomic Isomer Shifts

2016

Isomer shifts have been determined in ^{111-129}Cd by high-resolution laser spectroscopy at CERN-ISOLDE. The corresponding mean square charge-radii changes, from the 1/2^{+} and the 3/2^{+} ground states to the 11/2^{-} isomers, have been found to follow a distinct parabolic dependence as a function of the atomic mass number. Since the isomers have been previously associated with simplicity due to the linear mass dependence of their quadrupole moments, the regularity of the isomer shifts suggests a higher order of symmetry affecting the ground states in addition. A comprehensive description assuming nuclear deformation is found to accurately reproduce the radii differences in conjunction wi…

Mass numberPhysics010308 nuclear & particles physicsNuclear structureGeneral Physics and AstronomyOrder (ring theory)01 natural sciencesSymmetry (physics)0103 physical sciencesQuadrupolePhysics::Atomic and Molecular ClustersDensity functional theoryAtomic physics010306 general physicsSpectroscopyLine (formation)Physical Review Letters
researchProduct

Billion-Fold Enhancement in Sensitivity of Nuclear Magnetic Resonance Spectroscopy for Magnesium Ions in Solution

2014

Beta-nuclear magnetic resonance (NMR) spectroscopy is highly sensitive compared to conventional NMR spectroscopy, and may be applied for several elements across the periodic table. Beta-NMR has previously been successfully applied in the fields of nuclear and solid-state physics. In this work, beta-NMR is applied, for the first time, to record an NMR spectrum for a species in solution. 31Mg b-NMR spectra are measured for as few as 10^7 magnesium ions in ionic liquid (EMIM-Ac) within minutes, as a prototypical test case. Resonances are observed at 3882.9 and 3887.2 kHz in an external field of 0.3 T. The key achievement of the current work is to demonstrate that beta-NMR is applicable for the…

RadioisotopesMagnetic Resonance SpectroscopyChemistryCarbon-13 NMR satelliteIonic liquid (EMIM-Ac)Analytical chemistryIonic Liquids31MgNuclear magnetic resonance spectroscopyFluorine-19 NMRNuclear magnetic resonance crystallographyCarbon-13 NMRAtomic and Molecular Physics and OpticsSolutionsnucelar magnetci resonanceSolid-state nuclear magnetic resonanceMagnesiumPräzisionsexperimente - Abteilung BlaumPhysical and Theoretical ChemistryTwo-dimensional nuclear magnetic resonance spectroscopyEarth's field NMR
researchProduct

Spins and magnetic moments ofMn58,60,62,64ground states and isomers

2015

The odd-odd $^{54,56,58,60,62,64}\mathrm{Mn}$ isotopes ($Z=25$) were studied using bunched-beam collinear laser spectroscopy at ISOLDE, CERN. From the measured hyperfine spectra the spins and magnetic moments of Mn isotopes up to $N=39$ were extracted. The previous tentative ground state spin assignments of $^{58,60,62,64}\mathrm{Mn}$ are now firmly determined to be $I=1$ along with an $I=4$ assignment for the isomeric states in $^{58,60,62}\mathrm{Mn}$. The $I=1$ magnetic moments show a decreasing trend with increasing neutron number while the $I=4$ moments remain quite constant between $N=33$ and $N=37$. The results are compared to large-scale shell-model calculations using the GXPF1A and…

PhysicsNuclear and High Energy PhysicsMagnetic momentSpinsNeutron numberNeutronAtomic physicsNuclear ExperimentGround stateSpin (physics)7. Clean energyHyperfine structureResonance (particle physics)Physical Review C
researchProduct

Ground-state electromagnetic moments of calcium isotopes

2015

Artículo escrito por un elevado número de autores, solo se referencian el que aparece en primer lugar, el nombre del grupo de colaboración, si le hubiere, y los autores pertenecientes a la UAM

PhysicsNuclear and High Energy PhysicsNuclear TheoryField (physics)Magnetic momentFOS: Physical sciencesFísicanucl-ex7. Clean energy3. Good healthNuclear Theory (nucl-th)13. Climate actionNuclear Physics - TheoryQuadrupoleEffective field theoryNuclear forceNuclear Physics - ExperimentPräzisionsexperimente - Abteilung BlaumNuclear Experiment (nucl-ex)Atomic physicsNuclear ExperimentGround stateSpin (physics)Nuclear ExperimentHyperfine structure
researchProduct

From Calcium to Cadmium: Testing the Pairing Functional through Charge Radii Measurements of Cd100−130

2018

Differences in mean-square nuclear charge radii of $^{100--130}\mathrm{Cd}$ are extracted from high-resolution collinear laser spectroscopy of the $5s\text{ }{^{2}S}_{1/2}\ensuremath{\rightarrow}5p\text{ }{^{2}P}_{3/2}$ transition of the ion and from the $5s5p\text{ }{^{3}P}_{2}\ensuremath{\rightarrow}5s6s\text{ }{^{3}S}_{1}$ transition in atomic Cd. The radii show a smooth parabolic behavior on top of a linear trend and a regular odd-even staggering across the almost complete $sdgh$ shell. They serve as a first test for a recently established new Fayans functional and show a remarkably good agreement in the trend as well as in the total nuclear charge radius.

Physics010308 nuclear & particles physicsGeneral Physics and AstronomyCharge (physics)Radius01 natural sciencesEffective nuclear chargeIonPairing0103 physical sciencesAtomic physics010306 general physicsSpectroscopyLinear trendPhysical Review Letters
researchProduct

Magnetic and quadrupole moments of neutron deficient 58-62Cu isotopes

2011

Abstract This paper reports on the ground state nuclear moments measured in 58–62Cu using collinear laser spectroscopy at the ISOLDE facility. The quadrupole moments for 58–60Cu have been measured for the first time as Q ( Cu 58 ) = − 15 ( 3 ) efm 2 , Q ( Cu 59 ) = − 19.3 ( 19 ) efm 2 , Q ( Cu 60 ) = + 11.6 ( 12 ) efm 2 and with higher precision for 61,62Cu as Q ( Cu 61 ) = − 21.1 ( 10 ) efm 2 , Q ( Cu 62 ) = − 2.2 ( 4 ) efm 2 . The magnetic moments of 58,59Cu are measured with a higher precision as μ ( Cu 58 ) = + 0.570 ( 2 ) μ N and μ ( Cu 59 ) = + 1.8910 ( 9 ) μ N . The experimental nuclear moments are compared to large-scale shell-model calculations with the GXPF1 and GXPF1A effective i…

PhysicsNuclear and High Energy Physicsnuclear-structureIsotopeMagnetic momentNuclear moments010308 nuclear & particles physicsshell-modelNuclear structureN=287. Clean energy01 natural sciencesShell modelCu58Cu59Cu60Cu61Cu620103 physical sciencesQuadrupoleNuclear spinNeutronHyperfine structureAtomic physicsLaser spectroscopy010306 general physicsGround stateSpectroscopyHyperfine structure
researchProduct

Nuclear charge radii of potassium isotopes beyond N=28

2014

We report on the measurement of optical isotope shifts for 38, 39, 42, 44, 46–51 K relative to 47 K from which changes in the nuclear mean square charge radii across the N = 28 shell closure are deduced. The investigation was carried out by bunched-beam collinear laser spectroscopy at the CERN-ISOLDE radioactive ion-beam facility. Mean square charge radii are now known from 37K to 51K, covering all ν f7/2-shell as well as all νp3/2-shell nuclei. These measurements, in conjunction with those of Ca, Cr, Mn and Fe, provide a first insight into the Z dependence of the evolution of nuclear size above the shell closure at N = 28

Mean squareNuclear and High Energy PhysicsPotassiumCollinear laser spectroscopyNuclear TheoryShell (structure)FOS: Physical scienceschemistry.chemical_elementEffective nuclear chargeNuclear Physics - ExperimentNuclear Experiment (nucl-ex)SpectroscopyNuclear ExperimentNuclear ExperimentPhysicsIsotopeCharge (physics)Physique atomique et nucléaireIsotope shiftchemistryIsotopes of potassiumPotassiumPhysics::Accelerator PhysicsAtomic physicsPräzisionsexperimente - Abteilung BlaumNuclear charge radius
researchProduct

Changes in nuclear structure along the Mn isotopic chain studied via charge radii

2016

The hyperfine spectra of $^{51,53-64}$Mn were measured in two experimental runs using collinear laser spectroscopy at ISOLDE, CERN. Laser spectroscopy was performed on the atomic $3d^5\ 4s^2\ ^{6}\text{S}_{5/2}\rightarrow 3d^5\ 4s4p\ ^{6}\text{P}_{3/2}$ and ionic $3d^5\ 4s\ ^{5}\text{S}_2 \rightarrow 3d^5\ 4p\ ^{5}\text{P}_3$ transitions, yielding two sets of isotope shifts. The mass and field shift factors for both transitions have been calculated in the multiconfiguration Dirac-Fock framework and were combined with a King plot analysis in order to obtain a consistent set of mean-square charge radii which, together with earlier work on neutron-deficient Mn, allow the study of nuclear struc…

Nuclear and High Energy PhysicsField (physics)N=28FOS: Physical sciences114 Physical sciences01 natural sciencesSpectral line0103 physical sciencesPROGRAMNuclear Physics - ExperimentNeutronNuclear Experiment (nucl-ex)LASER SPECTROSCOPY010306 general physicsSpectroscopyCALCIUM ISOTOPESNuclear ExperimentHyperfine structureisotopesPhysicsisotoopitta114010308 nuclear & particles physicsNuclear structureSHIFTShyperfine spectraOrder (ring theory)Charge (physics)mangaaniQUADRUPOLE-MOMENTSnuclear structuremanganeseSHELL-MODELlaser spectroscopyNEUTRONPräzisionsexperimente - Abteilung BlaumAtomic physicsPhysical Review C
researchProduct

Proton-Neutron Pairing Correlations in the Self-Conjugate NucleusK38Probed via a Direct Measurement of the Isomer Shift

2014

A marked difference in the nuclear charge radius was observed between the ${I}^{\ensuremath{\pi}}={3}^{+}$ ground state and the ${I}^{\ensuremath{\pi}}={0}^{+}$ isomer of $^{38}\mathrm{K}$ and is qualitatively explained using an intuitive picture of proton-neutron pairing. In a high-precision measurement of the isomer shift using bunched-beam collinear laser spectroscopy at CERN-ISOLDE, a change in the mean-square charge radius of $⟨{r}_{\mathrm{c}}^{2}⟩{(}^{38}{\mathrm{K}}^{m})\ensuremath{-}⟨{r}_{\mathrm{c}}^{2}⟩{(}^{38}{\mathrm{K}}^{g})=0.100(6)\text{ }\text{ }{\mathrm{fm}}^{2}$ was obtained. This is an order of magnitude more accurate than the result of a previous indirect measurement fr…

PhysicsProtonCharge radiusPairingGeneral Physics and AstronomyCharge (physics)RadiusAtomic physicsGround stateSpectroscopyEffective nuclear chargePhysical Review Letters
researchProduct

Precision Test of Many-Body QED in theBe+2pFine Structure Doublet Using Short-Lived Isotopes

2015

Absolute transition frequencies of the $2s\text{ }{^{2}S}_{1/2}\ensuremath{\rightarrow}2p\text{ }{^{2}P}_{1/2,3/2}$ transitions in ${\mathrm{Be}}^{+}$ were measured for the isotopes $^{7,9--12}\mathrm{Be}$. The fine structure splitting of the $2p$ state and its isotope dependence are extracted and compared to results of ab initio calculations using explicitly correlated basis functions, including relativistic and quantum electrodynamics effects at the order of $m{\ensuremath{\alpha}}^{6}$ and $m{\ensuremath{\alpha}}^{7} \mathrm{ln} \ensuremath{\alpha}$. Accuracy has been improved in both the theory and experiment by 2 orders of magnitude, and good agreement is observed. This represents on…

PhysicsOrders of magnitude (time)Ab initio quantum chemistry methodsShort lived isotopesStructure (category theory)General Physics and AstronomyOrder (ring theory)Fine structureState (functional analysis)Atomic physicsHyperfine structurePhysical Review Letters
researchProduct

COLLINEAR LASER SPECTROSCOPY ON NEUTRON-RICH Mn ISOTOPES APPROACHING N = 40

2015

We have studied 51,53−64Mn (Z=25) via bunched-beam collinear laser spectroscopy at ISOLDE, CERN. Model-independent information on the ground- and isomeric state spins, as well as their g-factors is obtained from the measured hyperfine spectra. The spins are essential for further establishing the level schemes in the mass region, while the g-factors reveal the changing ground state wave functions in the Mn chain approaching N=40. ispartof: pages:699-702 ispartof: Acta Physica Polonica B vol:46 issue:3 pages:699-702 ispartof: location:Zakopane, Poland status: published

PhysicsNuclear physicsNuclear magnetic resonanceta114manganeseGeneral Physics and AstronomyPhysics::Accelerator PhysicsNeutronmangaanineutron-rich isotopesPräzisionsexperimente - Abteilung BlaumSpectroscopy
researchProduct

Nuclear Charge Radii ofMg21−32

2012

Charge radii of all magnesium isotopes in the sd shell have been measured, revealing evolution of the nuclear shape throughout two prominent regions of assumed deformation centered on (24)Mg and (32)Mg. A striking correspondence is found between the nuclear charge radius and the neutron shell structure. The importance of cluster configurations towards N=8 and collectivity near N=20 is discussed in the framework of the fermionic molecular dynamics model. These essential results have been made possible by the first application of laser-induced nuclear orientation for isotope shift measurements.

PhysicsIsotopeIsland of inversionNuclear TheoryGeneral Physics and AstronomyCharge densityCharge (physics)NeutronRadiusAtomic physicsNuclear ExperimentIsotopes of magnesiumEffective nuclear chargePhysical Review Letters
researchProduct

Unexpectedly large charge radii of neutron-rich calcium isotopes

2016

Despite being a complex many-body system, the atomic nucleus exhibits simple structures for certain "magic" numbers of protons and neutrons. The calcium chain in particular is both unique and puzzling: evidence of doubly-magic features are known in 40,48Ca, and recently suggested in two radioactive isotopes, 52,54Ca. Although many properties of experimentally known Ca isotopes have been successfully described by nuclear theory, it is still a challenge to predict their charge radii evolution. Here we present the first measurements of the charge radii of 49,51,52Ca, obtained from laser spectroscopy experiments at ISOLDE, CERN. The experimental results are complemented by state-of-the-art theo…

Nuclear Theory[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]Nuclear TheoryGeneral Physics and AstronomyFOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]7. Clean energy01 natural sciencesIsotopes of calciumNuclear Theory (nucl-th)0103 physical sciencesNuclear Physics - ExperimentNeutronMAGIC (telescope)Nuclear Experiment (nucl-ex)010306 general physicsSpectroscopyNuclear ExperimentNuclear ExperimentMagic number (physics)PhysicsIsotope010308 nuclear & particles physicsCharge (physics)13. Climate actionNuclear Physics - TheoryAtomic nucleusAtomic physicsPräzisionsexperimente - Abteilung Blaum
researchProduct

Spin and magnetic moment of23Mg

2017

A negative magnetic moment of 23Mg has been determined by collinear laser spectroscopy at CERN-ISOLDE. The absolute value is in agreement with previous measurements by nuclear magnetic resonance while the sign points at high-seniority configurations. The result is consistent with shell-model predictions for nuclei with valence nucleons in the sd shell. ispartof: Journal of Physics G, Nuclear and Particle Physics vol:44 issue:7 status: published

PhysicsNuclear and High Energy PhysicsAngular momentumValence (chemistry)[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]Magnetic moment010308 nuclear & particles physicsNuclear TheoryHadronElementary particleFermion01 natural sciencesNuclear magnetic resonance0103 physical sciencesPhysics::Atomic and Molecular ClustersPräzisionsexperimente - Abteilung BlaumAtomic physicsNuclear Experiment010306 general physicsNucleonSpectroscopyJournal of Physics G: Nuclear and Particle Physics
researchProduct

Shell structure of potassium isotopes deduced from their magnetic moments

2014

\item[Background] Ground-state spins and magnetic moments are sensitive to the nuclear wave function, thus they are powerful probes to study the nuclear structure of isotopes far from stability. \item[Purpose] Extend our knowledge about the evolution of the $1/2^+$ and $3/2^+$ states for K isotopes beyond the $N = 28$ shell gap. \item[Method] High-resolution collinear laser spectroscopy on bunched atomic beams. \item[Results] From measured hyperfine structure spectra of K isotopes, nuclear spins and magnetic moments of the ground states were obtained for isotopes from $N = 19$ up to $N = 32$. In order to draw conclusions about the composition of the wave functions and the occupation of the …

PhysicsNuclear and High Energy PhysicsMagnetic momentProtonNuclear Theory010308 nuclear & particles physicsNuclear structureFOS: Physical sciences[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciences7. Clean energy3. Good healthNuclear Theory (nucl-th)Atomic orbitalIsotopes of potassium0103 physical sciencesNeutronNuclear Physics - ExperimentAtomic physicsPräzisionsexperimente - Abteilung BlaumNuclear Experiment (nucl-ex)010306 general physicsGround stateHyperfine structureNuclear Experiment
researchProduct

Laser spectroscopy of gallium isotopes beyond N = 50

2012

The installation of an ion-beam cooler-buncher at the ISOLDE, CERN facility has provided increased sensitivity for collinear laser spectroscopy experiments. A migration of single-particle states in gallium and in copper isotopes has been investigated through extensive measurements of ground state and isomeric state hyperfine structures. Lying beyond the N = 50 shell closure, 82Ga is the most exotic nucleus in the region to have been studied by optical methods, and is reported here for the first time. ispartof: pages:012071-6 ispartof: Journal of Physics: Conference Series vol:381 issue:1 pages:012071-6 ispartof: Rutherford Centennial Conference on Nuclear Physics location:Manchester, UK dat…

HistoryHyperfine structure of gallium isotopesIsotopes of copperCollinear laser spectroscopychemistry.chemical_elementMagnetic and quadrupole moments of gallium isotopeskiihdytinpohjainen fysiikkaEducationydinrakenneGalliumSpectroscopyNuclear ExperimentHyperfine structurenuclear spectroscopyIsotopeaccelerator-based physicsNuclear structureComputer Science ApplicationsCOLLAPS beam lineIsotopes of galliumchemistrynuclear structureydinspektroskopiaPhysics::Accelerator PhysicsAtomic physicsGround stateydinfysiikka
researchProduct

Spins and electromagnetic moments of Cd101–109

2018

The neutron-deficient cadmium isotopes have been measured by high-resolution laser spectroscopy at CERN-ISOLDE. The electromagnetic moments of $^{101}\mathrm{Cd}$ have been determined for the first time and the quadrupole-moment precision of $^{103}\mathrm{Cd}$ has been vastly improved. The results on the sequence of $5/{2}^{+}$ ground states in $^{101--109}\mathrm{Cd}$ are tentatively discussed in the context of simple structure in complex nuclei as similarities are found with the $11/{2}^{\ensuremath{-}}$ states in the neutron-rich cases. Comparison with shell-model calculations reveals a prominent role of the two holes in the $Z=50$ core.

PhysicsSpins010308 nuclear & particles physicsIsotopes of cadmium0103 physical sciencesContext (language use)Atomic physicsNuclear Experiment010306 general physicsSpectroscopy01 natural sciencesPhysical Review C
researchProduct

Spins and magnetic moments of 58;60;62;64Mn ground states and isomers

2015

The odd-odd 54;56;58;60;62;64Mn isotopes (Z = 25) were studied using bunched-beam collinear laser spectroscopy at ISOLDE, CERN. From the measured hyperfine spectra the spins and magnetic moments of Mn isotopes up to N = 39 were extracted. The previous tentative ground state spin assignments of 58;60;62;64Mn are now firmly determined to be I = 1 along with an I = 4 assignment for the isomeric states in 58;60;62Mn. The I = 1 magnetic moments show a decreasing trend with increasing neutron number while the I = 4 moments remain quite constant between N = 33 and N = 37. The results are compared to large-scale shell-model calculations using the GXPF1A and LNPS effective interactions. The excellen…

isotoopitSpin parity and isobaric spinFOS: Physical sciencesmangaaniElectromagnetic momentsShell modelmagnetic momentsNuclear Physics - ExperimentPräzisionsexperimente - Abteilung BlaumLaser spectroscopyNuclear Experiment (nucl-ex)Nuclear ExperimentNuclear Experimentspins
researchProduct

Nuclear Charge Radius of $^{12}$Be

2012

The nuclear charge radius of $^{12}$Be was precisely determined using the technique of collinear laser spectroscopy on the $2s_{1/2}\rightarrow 2p_{1/2, 3/2}$ transition in the Be$^{+}$ ion. The mean square charge radius increases from $^{10}$Be to $^{12}$Be by $\delta ^{10,12} = 0.69(5) \fm^{2}$ compared to $\delta ^{10,11} = 0.49(5) \fm^{2}$ for the one-neutron halo isotope $^{11}$Be. Calculations in the fermionic molecular dynamics approach show a strong sensitivity of the charge radius to the structure of $^{12}$Be. The experimental charge radius is consistent with a breakdown of the N=8 shell closure.

Nuclear Theory (nucl-th)Nuclear TheoryAtomic Physics (physics.atom-ph)Other Fields of Physicsddc:550FOS: Physical sciencesPhysics - Atomic Physics
researchProduct

Spins and Magnetic Moments of $^{49}$K and $^{51}$K: establishing the 1/2$^+$ and 3/2$^+$ level ordering beyond $N$ = 28

2013

The ground-state spins and magnetic moments of $^{49,51}$K have been measured using bunched-beam high-resolution collinear laser spectroscopy at ISOLDE-CERN. For $^{49}$K a ground-state spin $I = 1/2$ was firmly established. The observed hyperfine structure of $^{51}$K requires a spin $I > 1/2$ and from its magnetic moment $\mu(^{51}\text{K})= +0.5129(22)\, \mu_N$ a spin/parity $I^\pi=3/2^+$ with a dominant $\pi 1d_{3/2}^{-1}$ hole configuration was deduced. This establishes for the first time the re-inversion of the single-particle levels and illustrates the prominent role of the residual monopole interaction for single-particle levels and shell evolution.

Nuclear Theory (nucl-th)Nuclear TheoryFOS: Physical sciencesNuclear Experiment (nucl-ex)Nuclear Experiment
researchProduct

Nuclear mean-square charge radii of $^{63,64,66,68−82}$Ga nuclei: No anomalous behavior at N=32

2012

Collinear laser spectroscopy was performed on the 63,64,66,68−82Ga isotopes with neutron numbers from N = 32 to N = 51. These measurements were carried out at the ISOLDE radioactive ion beam facility at CERN. Here we present the nuclear mean-square charge radii extracted from the isotope shifts and, for the lighter isotopes, new spin and moment values. New ground-state nuclear spin and moments were extracted from the hyperfine spectra of 63,70Ga, measured on an atomic transition in the neutral atom. The ground-state spin of 63Ga is determined to be I = 3/2. Analysis of the trend in the change in mean-square charge radii of the gallium isotopes demonstrates that there is no evidence of anoma…

nuclear spectroscopyydinrakenneaccelerator-based physicsnuclear structureydinspektroskopiaddc:530Physics::Atomic PhysicsNuclear Experimentydinfysiikkakiihdytinpohjainen fysiikka
researchProduct