0000000001130624
AUTHOR
U. Rogulis
Optical detection of paramagnetic centres in activated oxyfluoride glass-ceramics
Electron paramagnetic resonance (EPR), magnetic circular dichroism (MCD) and EPR detected via MCD (MCD-EPR) investigations have been performed on rare-earth activated oxyfluoride glasses and glass-ceramics. Er3+, Gd3+, and Mn2+ activators in oxyfluoride glass-ceramics show paramagnetic MCD behaviour and the MCD-EPR has been detected. The results of the MCD-EPR measurements for the Er-doped oxyfluoride glass-ceramics showed that Er3+ ions in the CaF2 crystallites in these ceramics embed only in the cubic symmetry environment, similarly to the previous observations of cubic Gd3+ centres in the glass-ceramics containing CaF2. Finally, the correlation of optics and paramagnetic centres is discu…
Investigation of Oxygen-Related Luminescence Centres in AlN Ceramics
The structure of oxygen-related luminescence centres in nominally undoped and Y 2 O 3 doped AlN ceramics was investigated by electron paramagnetic resonance (EPR), electron nuclear double resonance (ENDOR) and optically-detected EPR. The photoluminescence-detected EPR lines having g-values of 1.990 and 2.008 were assigned to a recombination between neighbouring donor and acceptor pairs. The two EPR lines at g = 1.987 and 2.003 detected via the recombination luminescence in the afterglow are thought to be due to a recombination between the same, but distant donor and acceptor pairs. The donor was previously speculated to be an electron trapped on an oxygen impurity which substitutes for a ni…
Magnetic resonance investigations of oxygen-related luminescence centres in AlN ceramics
Abstract The structure of oxygen-related luminescence centres in nominally undoped and Y2O3-doped AIN ceramics were investigated by electron paramagnetic resonance (EPR), electron nuclear double resonance (ENDOR) and optically-detected EPR. The photoluminescence-detected EPR lines having g values of 1.990 and 2.008 were attributed to neighbouring donor and acceptor pairs causing the recombination luminescence excited in the ultraviolet. The two EPR lines at g = 1.987 and g = 2.003, detected via the recombination luminescence in the afterglow, are thought to be due to a recombination between the same, but more distant donor and acceptor pairs. The donor is supposed to be an electron trapped …