Comparing Correlation Matrix Estimators Via Kullback-Leibler Divergence
We use a self-averaging measure called Kullback-Leibler divergence to evaluate the performance of four different correlation estimators: Fourier, Pearson, Maximum Likelihood and Hayashi-Yoshida estimator. The study uses simulated transaction prices for a large number of stocks and different data generating mechanisms, including synchronous and non-synchronous transactions, homogeneous and heterogeneous inter-transaction time. Different distributions of stock returns, i.e. multivariate Normal and multivariate Student's t-distribution, are also considered. We show that Fourier and Pearson estimators are equivalent proxies of the `true' correlation matrix within all the settings under analysis…