0000000001130790

AUTHOR

Emilia Morosan

Crystal structure and physical properties of Mg6Cu16Si7-type M6Ni16Si7, for M=Mg, Sc, Ti, Nb, and Ta

Five compounds were investigated for magnetic character and superconductivity, all with non-magnetic nickel and band structures containing flat bands and steep bands. The syntheses and crystal structures, refined by powder X-ray diffraction, are reported for M{sub 6}Ni{sub 16}Si{sub 7}, where M = Mg, Sc, Ti, Nb, and Ta. All compounds form in the Mg{sub 6}Cu{sub 16}Si{sub 7} structure type. Resistance measurements are also reported on M{sub 6}Ni{sub 16}Si{sub 7} (M = Mg, Sc, Ti, and Nb) down to 0.3 K, with all four showing metallic conductivity. No superconductivity is observed. Magnetization measurements for all compounds reveal essentially temperature independent paramagnetism, with a tend…

research product

Quantum critical point in the itinerant ferromagnet Ni$_{1-x}$Rh$_x$

We report a chemical substitution-induced ferromagnetic quantum critical point in polycrystalline Ni$_{1-x}$Rh$_x$ alloys. Through magnetization and muon spin relaxation measurements, we show that the ferromagnetic ordering temperature is suppressed continuously to zero at $x_{crit} = 0.375$ while the magnetic volume fraction remains 100% up to $x_{crit}$, pointing to a second order transition. Non-Fermi liquid behavior is observed close to $x_{crit}$, where the electronic specific heat $C_{el}/T$ diverges logarithmically, while immediately above $x_{crit}$ the volume thermal expansion coefficient $\alpha_{V}/T$ and the Gr\"uneisen ratio $\Gamma = \alpha_{V}/C_{el}$ both diverge logarithmic…

research product

Very large magnetoresistance inFe0.28TaS2single crystals

There is great interest in understanding the physics of magnetic ordering and electronic transport in materials of reduced dimensionality with strong spin-orbit coupling. This paper presents magnetotransport measurements of Fe${}_{0.28}$TaS${}_{2}$ single crystals, which are found to exhibit very large magnetoresistance (MR) for magnetic fields along the easy axis. The authors believe that such a large MR arises from spin disorder scattering and propose to use this mechanism as a design principle for materials with large MR. Further tests are needed to fully rule out contributions from a more conventional anisotropic MR mechanism.

research product