Vibrio cholerae cytolysin: assembly and membrane insertion of the oligomeric pore are tightly linked and are not detectably restricted by membrane fluidity
AbstractHemolytic strains of Vibrio cholerae secrete a cytolysin that, upon binding as a monomer, forms pentameric pores in animal cell membranes. Pore formation is inhibited at low temperature and in the absence of cholesterol. We here posed the following questions: firstly, can oligomerization be observed in the absence of pore formation? Secondly, is membrane fluidity responsible for the effect of temperature or of cholesterol upon pore formation? The first issue was approached by chemical cross-linking, by electrophoretic heteromer analysis, and by electron microscopy. None of these methods yielded any evidence of a non-lytic pre-pore oligomer. The second question was addressed by the u…