0000000001131890

AUTHOR

Zane Kalnina

showing 2 related works from this author

Bioanalytical system for detection of cancer cells with photoluminescent ZnO nanorods

2016

Using photoluminescent ZnO nanorods and carbohydrate marker SSEA-4, a novel cancer cell recognition system was developed. Immobilization of SSEA-4 antibodies (αSSEA-4) on ZnO nanorods was performed in buffer solution (pH = 7.1) over 2 h. The cancer cell line probes were fixed on the glass slide. One hundred microliters of ZnO-αSSEA-4 conjugates were deposited on the cell probe and exposed for 30 min. After washing photoluminescence spectra were recorded. Based on the developed methodology, ZnO-αSSEA-4 probes were tested on patient-derived breast and colorectal carcinoma cells. Our data clearly show that the carbohydrate SSEA-4 molecule is expressed on cancer cell lines and patient-derived c…

LuminescenceMaterials sciencePhotoluminescencemedicine.medical_treatmentPopulationBioengineeringNanotechnologyBiosensing Techniques02 engineering and technology010402 general chemistry01 natural sciencesAntibodiesTargeted therapychemistry.chemical_compoundNeoplasmsmedicineHumansGeneral Materials ScienceElectrical and Electronic Engineeringeducationeducation.field_of_studyNanotubesMechanical EngineeringCancerGeneral ChemistryBuffer solution021001 nanoscience & nanotechnologymedicine.disease0104 chemical scienceschemistryMechanics of MaterialsCancer cellNanorodZinc Oxide0210 nano-technologyBiosensorNanotechnology
researchProduct

DNA damage causes TP53-dependent coupling of self-renewal and senescence pathways in embryonal carcinoma cells.

2013

Recent studies have highlighted an apparently paradoxical link between self-renewal and senescence triggered by DNA damage in certain cell types. In addition, the finding that TP53 can suppress senescence has caused a re-evaluation of its functional role in regulating these outcomes. To investigate these phenomena and their relationship to pluripotency and senescence, we examined the response of the TP53-competent embryonal carcinoma (EC) cell line PA-1 to etoposide-induced DNA damage. Nuclear POU5F1/OCT4A and P21CIP1 were upregulated in the same cells following etoposide-induced G 2M arrest. However, while accumulating in the karyosol, the amount of OCT4A was reduced in the chromatin fract…

SenescenceCyclin-Dependent Kinase Inhibitor p21OCT4A/POU5F1Embryonal Carcinoma Stem CellssenescenceDNA RepairDNA repairDNA damagetumor cellsBiologyProtein Serine-Threonine Kinasesself-renewalHistonesAurora KinasesCell Line TumorReportAutophagyAurora Kinase BHumansTP53PhosphorylationRNA Small InterferingMolecular BiologyMitosisCellular SenescenceCyclin-Dependent Kinase Inhibitor p16EtoposideOvarian NeoplasmsEmbryonal Carcinoma Stem CellsCell BiologyG2-M DNA damage checkpointbeta-GalactosidasepluripotencyAntineoplastic Agents PhytogenicChromatinUp-RegulationG2 Phase Cell Cycle CheckpointsCheckpoint Kinase 2Cancer researchDNA damageFemaleRNA InterferenceRad51 RecombinaseTumor Suppressor Protein p53Cell agingOctamer Transcription Factor-3Developmental BiologyCell cycle (Georgetown, Tex.)
researchProduct