0000000001131898
AUTHOR
Lidia Ballester-tomás
The Antarctic yeast Candida sake: Understanding cold metabolism impact on wine
Current winemaking trends include low-temperature fermentations and using non-Saccharomyces yeasts as the most promising tools to produce lower alcohol and increased aromatic complexity wines. Here we explored the oenological attributes of a C. sake strain, H14Cs, isolated in the sub-Antarctic region. As expected, the cold sea water yeast strain showed greater cold growth, Na+-toxicity resistance and freeze tolerance than the S. cerevisiae QA23 strain, which we used as a commercial wine yeast control. C. sake H14Cs was found to be more sensitive to ethanol. The fermentation trials of low-sugar content must demonstrated that C. sake H14Cs allowed the cold-induced lag phase of growth to be el…
Inappropriate translation inhibition and P-body formation cause cold-sensitivity in tryptophan-auxotroph yeast mutants
In response to different adverse conditions, most eukaryotic organisms, including Saccharomyces cerevisiae, downregulate protein synthesis through the phosphorylation of eIF2α (eukaryotic initiation factor 2α) by Gcn2, a highly conserved protein kinase. Gcn2 also controls the translation of Gcn4, a transcription factor involved in the induction of amino acid biosynthesis enzymes. Here, we have studied the functional role of Gcn2 and Gcn2-regulating proteins, in controlling translation during temperature downshifts of TRP1 and trp1 yeast cells. Our results suggest that neither cold-instigated amino acid limitation nor Gcn2 are involved in the translation suppression at low temperature. Howev…