0000000001133820
AUTHOR
Giovanni M. Marchetti
Explicit, identical maximum likelihood estimates for some cyclic Gaussian and cyclic Ising models
Cyclic models are a subclass of graphical Markov models with simple, undirected probability graphs that are chordless cycles. In general, all currently known distributions require iterative procedures to obtain maximum likelihood estimates in such cyclic models. For exponential families, the relevant conditional independence constraint for a variable pair is given all remaining variables, and it is captured by vanishing canonical parameters involving this pair. For Gaussian models, the canonical parameter is a concentration, that is, an off-diagonal element in the inverse covariance matrix, while for Ising models, it is a conditional log-linear, two-factor interaction. We give conditions un…
Binary distributions of concentric rings
We introduce families of jointly symmetric, binary distributions that are generated over directed star graphs whose nodes represent variables and whose edges indicate positive dependences. The families are parametrized in terms of a single parameter. It is an outstanding feature of these distributions that joint probabilities relate to evenly spaced concentric rings. Kronecker product characterizations make them computationally attractive for a large number of variables. We study the behavior of different measures of dependence and derive maximum likelihood estimates when all nodes are observed and when the inner node is hidden.