0000000001136298

AUTHOR

K. Ott

showing 2 related works from this author

Controlling Fast Transport of Cold Trapped Ions

2012

We realize fast transport of ions in a segmented micro-structured Paul trap. The ion is shuttled over a distance of more than 10^4 times its groundstate wavefunction size during only 5 motional cycles of the trap (280 micro meter in 3.6 micro seconds). Starting from a ground-state-cooled ion, we find an optimized transport such that the energy increase is as low as 0.10 $\pm$ 0.01 motional quanta. In addition, we demonstrate that quantum information stored in a spin-motion entangled state is preserved throughout the transport. Shuttling operations are concatenated, as a proof-of-principle for the shuttling-based architecture to scalable ion trap quantum computing.

PhysicsQuantum PhysicsAtomic Physics (physics.atom-ph)FOS: Physical sciencesGeneral Physics and AstronomyIon trappingPhysics - Atomic PhysicsIonTrap (computing)Ion trapAtomic physicsQuantum informationQuantum Physics (quant-ph)Ground stateTrapped ion quantum computerQuantum computerPhysical Review Letters
researchProduct

Quantum magnetism of spin-ladder compounds with trapped-ion crystals

2012

Abstract The quest for experimental platforms that allow for the exploration, and even control, of the interplay of low dimensionality and frustration is a fundamental challenge in several fields of quantum many-body physics, such as quantum magnetism. Here, we propose the use of cold crystals of trapped ions to study a variety of frustrated quantum spin ladders. By optimizing the trap geometry, we show how to tailor the low dimensionality of the models by changing the number of legs of the ladders. Combined with a method for selectively hiding ions provided by laser addressing, it becomes possible to synthesize stripes of both triangular and Kagome lattices. Besides, the degree of frustrat…

Phase transitionMagnetismmedia_common.quotation_subjectGeneral Physics and AstronomyFrustrationFOS: Physical sciences01 natural sciencesIonenfalle010305 fluids & plasmasCondensed Matter - Strongly Correlated Electrons0103 physical sciencesTrapped ionsddc:530010306 general physicsSpin (physics)AnisotropyQuantummedia_commonPhysicsQuantum PhysicsCondensed matter physicsStrongly Correlated Electrons (cond-mat.str-el)DDC 530 / PhysicsANNNI modelQuantum Gases (cond-mat.quant-gas)Condensed Matter::Strongly Correlated ElectronsCondensed Matter - Quantum GasesQuantum Physics (quant-ph)Curse of dimensionalityNew Journal of Physics
researchProduct