0000000001136443

AUTHOR

Liqing Liu

Multi-objective optimization for computation offloading in mobile-edge computing

Mobile-edge cloud computing is a new cloud platform to provide pervasive and agile computation augmenting services for mobile devices (MDs) at anytime and anywhere by endowing ubiquitous radio access networks with computing capabilities. Although offloading computations to the cloud can reduce energy consumption at the MDs, it may also incur a larger execution delay. Usually the MDs have to pay cloud resource they used. In this paper, we utilize queuing theory to bring a thorough study on the energy consumption, execution delay and price cost of offloading process in a mobile-edge cloud system. Specifically, both wireless transmission and computing capabilities are explicitly and jointly co…

research product

Dynamic Resource Allocation and Computation Offloading for Edge Computing System

In this work, we propose a dynamic optimization scheme for an edge computing system with multiple users, where the radio and computational resources, and offloading decisions, can be dynamically allocated with the variation of computation demands, radio channels and the computation resources. Specifically, with the objective to minimize the energy consumption of the considered system, we propose a joint computation offloading, radio and computational resource allocation algorithm based on Lyapunov optimization. Through minimizing the derived upper bound of the Lyapunov drift-plus-penalty function, the main problem is divided into several sub-problems at each time slot and are addressed sepa…

research product

Data offloading and task allocation for cloudlet-assisted ad hoc mobile clouds

Nowadays, although the data processing capabilities of the modern mobile devices are developed in a fast speed, the resources are still limited in terms of processing capacity and battery lifetime. Some applications, in particular the computationally intensive ones, such as multimedia and gaming, often require more computational resources than a mobile device can afford. One way to address such a problem is that the mobile device can offload those tasks to the centralized cloud with data centers, the nearby cloudlet or ad hoc mobile cloud. In this paper, we propose a data offloading and task allocation scheme for a cloudlet-assisted ad hoc mobile cloud in which the master device (MD) who ha…

research product

Socially-aware Dynamic Computation Offloading Scheme for Fog Computing System with Energy Harvesting Devices

Fog computing is considered as a promising technology to meet the ever-increasing computation requests from a wide variety of mobile applications. By offloading the computation-intensive requests to the fog node or the central cloud, the performance of the applications, such as energy consumption and delay, are able to be significantly enhanced. Meanwhile, utilizing the recent advances of social network and energy harvesting (EH) techniques, the system performance could be further improved. In this paper, we take the social relationships of the EH mobile devices (MDs) into the design of computational offloading scheme in fog computing. With the objective to minimize the social group executi…

research product

Multi-objective Optimization for Computation Offloading in Fog Computing

Fog computing system is an emergent architecture for providing computing, storage, control, and networking capabilities for realizing Internet of Things. In the fog computing system, the mobile devices (MDs) can offload its data or computational expensive tasks to the fog node within its proximity, instead of distant cloud. Although offloading can reduce energy consumption at the MDs, it may also incur a larger execution delay including transmission time between the MDs and the fog/cloud servers, and waiting and execution time at the servers. Therefore, how to balance the energy consumption and delay performance is of research importance. Moreover, based on the energy consumption and delay,…

research product