0000000001137542
AUTHOR
Déborah Leborgne
Plant acclimation to high temperatures and water deficit: a comparative study determining independent and combined effects in four grain legume species
National audience; Four grain legumes species (Pea, Faba bean, Lentil and Lupin) were evaluated for their responses to high temperatures (HT) and soil water deficit (WD), applied independently or jointly. We characterized both nodulated root development and growth, as well as nodulated root performance in terms of water and N uptake. To that aim, plants inoculated with rhizobium were grown up to four weeks, corresponding to their vegetative stage, in innovative RhizoTubes© on the 4PMI high throughput phenotyping platform. Most of the traits, including overall plant performance illustrated by plant biomass, were more impacted by combined HT and WD than when these stresses were applied separa…
Can LCO and mycorrhiza mitigate the impact of water deficit on pea growth in co-inoculations with rhizobium? A preliminary assessment
National audience; Water stress is a major factor limiting production of legumes in Europe, but could be mitigated by improving interactions between plant roots and soil microbial communities, including symbiotic rhizobia and arbuscular mycorrhizal fungi. These two microbes produce lipochitooligosaccharide (LCO) signals, which stimulate symbiotic interactions and lateral root formation [1, 2]. While N2-fixation by rhizobia fulfills the plants N requirement [3], mycorrhizal fungi can improve mineral nutrition (P, N, S, K, Zn, Cu…) and water uptake [4- 5]. We have investigated in pea plants grown in interaction with a rhizobium strain, to what extent the negative impact of water deficit could…
Root growth and development under heat and water stresses: a comparative study determining independent and combined effects in four grain legume species
International audience; hanks to their ability to fix atmospheric dinitrogen in symbiosis with soil bacteria, grain legumes provide a sustainable way to ensure food and nutritional security. Unfortunately, these crops are highly susceptible to environmental constraints such as heat or water stresses which leads to fluctuating yields as compared to cereals. In the context of climate change, more frequent episodes of heat stress, concomitant (or not) with water stress are expected. This emphasizes the need to identify key plant traits towards a better yield stability under stressful conditions.