0000000001137698

AUTHOR

Valentinos Kongezos

showing 1 related works from this author

State classification for autonomous gas sample taking using deep convolutional neural networks

2017

Despite recent rapid advances and successful large-scale application of deep Convolutional Neural Networks (CNNs) using image, video, sound, text and time-series data, its adoption within the oil and gas industry in particular have been sparse. In this paper, we initially present an overview of opportunities for deep CNN methods within oil and gas industry, followed by details on a novel development where deep CNN have been used for state classification of autonomous gas sample taking procedure utilizing an industrial robot. The experimental results — using a deep CNN containing six layers — show accuracy levels exceeding 99 %. In addition, the advantages of using parallel computing with GP…

Artificial neural networkComputer sciencebusiness.industryProperty (programming)Feature extraction0102 computer and information sciences02 engineering and technologyMachine learningcomputer.software_genre01 natural sciencesConvolutional neural networklaw.inventionImage (mathematics)Industrial robot020401 chemical engineeringComputer engineering010201 computation theory & mathematicslawProbability distributionArtificial intelligenceState (computer science)0204 chemical engineeringbusinesscomputer2017 25th Mediterranean Conference on Control and Automation (MED)
researchProduct