Hierarchies of probabilistic and team FIN-learning
AbstractA FIN-learning machine M receives successive values of the function f it is learning and at some moment outputs a conjecture which should be a correct index of f. FIN learning has two extensions: (1) If M flips fair coins and learns a function with certain probability p, we have FIN〈p〉-learning. (2) When n machines simultaneously try to learn the same function f and at least k of these machines output correct indices of f, we have learning by a [k,n]FIN team. Sometimes a team or a probabilistic learner can simulate another one, if their probabilities p1,p2 (or team success ratios k1/n1,k2/n2) are close enough (Daley et al., in: Valiant, Waranth (Eds.), Proc. 5th Annual Workshop on C…