0000000001140462
AUTHOR
D. Eisenacher Glawion
Insights into the particle acceleration of a peculiar gamma -ray radio galaxy IC 310
IC 310 has recently been identified as a gamma-ray emitter based on observations at GeV energies with Fermi-LAT and at very high energies (VHE, E > 100 GeV) with the MAGIC telescopes. Despite IC 310 having been classified as a radio galaxy with the jet observed at an angle > 10 degrees, it exhibits a mixture of multiwavelength properties of a radio galaxy and a blazar, possibly making it a transitional object. On the night of 12/13th of November 2012 the MAGIC telescopes observed a series of violent outbursts from the direction of IC 310 with flux-doubling time scales faster than 5 min and a peculiar spectrum spreading over 2 orders of magnitude. Such fast variability constrains the size of…
ANTARES constrains a blazar origin of two IceCube PeV neutrino events
Abstract Context. The source(s) of the neutrino excess reported by the IceCube Collaboration is unknown. The TANAMI Collaboration recently reported on the multiwavelength emission of six bright, variable blazars which are positionally coincident with two of the most energetic IceCube events. Objects like these are prime candidates to be the source of the highest-energy cosmic rays, and thus of associated neutrino emission. Aims. We present an analysis of neutrino emission from the six blazars using observations with the ANTARES neutrino telescope. Methods. The standard methods of the ANTARES candidate list search are applied to six years of data to search for an excess of muons and hence th…
Multiband variability studies and novel broadband SED modeling of Mrk 501 in 2009
Astronomy and astrophysics 603, A31 (2017). doi:10.1051/0004-6361/201629540
First Multi-wavelength Campaign on the Gamma-ray-loud Active Galaxy IC 310
The extragalactic VHE gamma-ray sky is rich in blazars. These are jetted active galactic nuclei viewed at a small angle to the line-of-sight. Only a handful of objects viewed at a larger angle are known so far to emit above 100 GeV. Multi-wavelength studies of such objects up to the highest energies provide new insights into the particle and radiation processes of active galactic nuclei. We report the results from the first multi-wavelength campaign observing the TeV detected nucleus of the active galaxy IC 310, whose jet is observed at a moderate viewing angle of 10 deg - 20 deg. The multi-instrument campaign was conducted between 2012 Nov. and 2013 Jan., and involved observations with MAG…
The EVN view of the highly variable TeV active galaxy IC 310
Very-high-energy $\gamma$-ray observations of the active galaxy IC 310 with the MAGIC telescopes have revealed fast variability with doubling time scales of less than 4.8min. This implies that the emission region in IC 310 is smaller than 20% of the gravitational radius of the central supermassive black hole with a mass of $3\times 10^8 M_\odot$, which poses serious questions on the emission mechanism and classification of this enigmatic object. We report on the first quasi-simultaneous multi-frequency VLBI observations of IC 310 conducted with the EVN. We find a blazar-like one-sided core-jet structure on parsec scales, constraining the inclination angle to be less than $\sim 20^\circ$ but…
Insights into the particle acceleration of a peculiar gamma -ray radio galaxy IC 310
IC 310 has recently been identified as a gamma-ray emitter based on observations at GeV energies with Fermi-LAT and at very high energies (VHE, E > 100 GeV) with the MAGIC telescopes. Despite IC 310 having been classified as a radio galaxy with the jet observed at an angle > 10 degrees, it exhibits a mixture of multiwavelength properties of a radio galaxy and a blazar, possibly making it a transitional object. On the night of 12/13th of November 2012 the MAGIC telescopes observed a series of violent outbursts from the direction of IC 310 with flux-doubling time scales faster than 5 min and a peculiar spectrum spreading over 2 orders of magnitude. Such fast variability constrains the s…
Coincidence of a high-fluence blazar outburst with a PeV-energy neutrino event
The discovery of extraterrestrial very-high-energy neutrinos by the IceCube collaboration has launched a quest for the identification of their astrophysical sources. Gamma-ray blazars have been predicted to yield a cumulative neutrino signal exceeding the atmospheric background above energies of 100 TeV, assuming that both the neutrinos and the gamma-ray photons are produced by accelerated protons in relativistic jets. Since the background spectrum falls steeply with increasing energy, the individual events with the clearest signature of being of an extraterrestrial origin are those at PeV energies. Inside the large positional-uncertainty fields of the first two PeV neutrinos detected by Ic…