0000000001142126
AUTHOR
S. Reza Ghaffarian
Dominance of Chain Entanglement over Transient Sticking on Chain Dynamics in Hydrogen-Bonded Supramolecular Polymer Networks in the Melt
The chain dynamics in supramolecular polymer networks is determined by the interplay of the kinetics of transient interchain association and relaxation of the network chains themselves. This interplay can be addressed by studying model supramolecular polymer networks in which the number of associative side groups and the molar mass of the covalently jointed backbone polymers are both varied systematically. To realize this idea, we use precursor chains with three different molar masses, which comes along with different extents of entanglement in the melt state. For each molar mass, the precursor polymers are functionalized with three different relative contents of associative side groups, gi…
Thermal and viscoelastic properties of entangled supramolecular polymer networks as a powerful tool for prediction of their microstructure
Abstract Thermal and viscoelastic properties of entangled supramolecular polymer networks, SPNs, depend strongly on binary and collective assembly of associative groups. The collective assemblies can phase separate from polymer matrix chains and form domains with different sizes and shapes, which have different melting point transitions. By increasing content of associative groups along the polymer chains, their high-order association leads to formation of domains, which have higher melting temperatures than other ones. We prepared a SPN system that contains three networks. All networks have similar precursor polymer backbone, but different content of ureidopyrimidinone, UPy, moiety as stro…