0000000001143689

AUTHOR

Mathieu Blondel

Implicit differentiation of Lasso-type models for hyperparameter optimization

International audience; Setting regularization parameters for Lasso-type estimators is notoriously difficult, though crucial in practice. The most popular hyperparam-eter optimization approach is grid-search using held-out validation data. Grid-search however requires to choose a predefined grid for each parameter , which scales exponentially in the number of parameters. Another approach is to cast hyperparameter optimization as a bi-level optimization problem, one can solve by gradient descent. The key challenge for these methods is the estimation of the gradient w.r.t. the hyperpa-rameters. Computing this gradient via forward or backward automatic differentiation is possible yet usually s…

research product

Implicit differentiation for fast hyperparameter selection in non-smooth convex learning

International audience; Finding the optimal hyperparameters of a model can be cast as a bilevel optimization problem, typically solved using zero-order techniques. In this work we study first-order methods when the inner optimization problem is convex but non-smooth. We show that the forward-mode differentiation of proximal gradient descent and proximal coordinate descent yield sequences of Jacobians converging toward the exact Jacobian. Using implicit differentiation, we show it is possible to leverage the non-smoothness of the inner problem to speed up the computation. Finally, we provide a bound on the error made on the hypergradient when the inner optimization problem is solved approxim…

research product