Simulating long-distance entanglement in quantum spin chains by superconducting flux qubits
We investigate the performance of superconducting flux qubits for the adiabatic quantum simulation of long distance entanglement (LDE), namely a finite ground-state entanglement between the end spins of a quantum spin chain with open boundary conditions. As such, LDE can be considered an elementary precursor of edge modes and topological order. We discuss two possible implementations which simulate open chains with uniform bulk and weak end bonds, either with Ising or with XX nearest-neighbor interactions. In both cases we discuss a suitable protocol for the adiabatic preparation of the ground state in the physical regimes featuring LDE. In the first case the adiabatic manipulation and the …