0000000001144915

AUTHOR

André Reis

Further delineation of the female phenotype with KDM5C disease causing variants: 19 new individuals and review of the literature.

X-linked intellectual disability (XLID) is a genetically heterogeneous condition involving more than 100 genes. To date, 35 pathogenic variants have been reported in the lysine specific demethylase 5C (KDM5C) gene. KDM5C variants are one of the major causes of moderate to severe XLID. Affected males present with short stature, distinctive facial features, behavioral disorders, epilepsy, and spasticity. For most of these variants, related female carriers have been reported, but phenotypic descriptions were poor. Here, we present clinical and molecular features of 19 females carrying 10 novel heterozygous variants affecting KDM5C function, including five probands with de novo variants. Four h…

research product

TALPID3 controls centrosome and cell polarity and the human ortholog KIAA0586 is mutated in Joubert syndrome (JBTS23)

Joubert syndrome (JBTS) is a severe recessive neurodevelopmental ciliopathy which can affect several organ systems. Mutations in known JBTS genes account for approximately half of the cases. By homozygosity mapping and whole-exome sequencing, we identified a novel locus, JBTS23, with a homozygous splice site mutation in KIAA0586 (alias TALPID3), a known lethal ciliopathy locus in model organisms. Truncating KIAA0586 mutations were identified in two additional patients with JBTS. One mutation, c.428delG (p.Arg143Lysfs*4), is unexpectedly common in the general population and may be a major contributor to JBTS. We demonstrate KIAA0586 protein localization at the basal body in human and mouse p…

research product

Bainbridge-Ropers syndrome caused by loss-of-function variants in ASXL3: a recognizable condition

International audience; Truncating ASXL3 mutations were first identified in 2013 by Bainbridge et al. as a cause of syndromic intellectual disability in four children with similar phenotypes using whole-exome sequencing. The clinical features - postulated by Bainbridge et al. to be overlapping with Bohring-Opitz syndrome - were developmental delay, severe feeding difficulties, failure to thrive and neurological abnormalities. This condition was included in OMIM as 'Bainbridge-Ropers syndrome' (BRPS, #615485). To date, a total of nine individuals with BRPS have been published in the literature in four reports (Bainbridge et al., Dinwiddie et al, Srivastava et al. and Hori et al.). In this re…

research product

Author response: TALPID3 controls centrosome and cell polarity and the human ortholog KIAA0586 is mutated in Joubert syndrome (JBTS23)

research product

Expanding the Phenotype Associated with NAA10-Related N-Terminal Acetylation Deficiency

International audience; N-terminal acetylation is a common protein modification in eukaryotes associated with numerous cellular processes. Inherited mutations in NAA10, encoding the catalytic subunit of the major N-terminal acetylation complex NatA have been associated with diverse, syndromic X-linked recessive disorders, whereas de novo missense mutations have been reported in one male and one female individual with severe intellectual disability but otherwise unspecific phenotypes. Thus, the full genetic and clinical spectrum of NAA10 deficiency is yet to be delineated. We identified three different novel and one known missense mutation in NAA10, de novo in 11 females, and due to maternal…

research product

NDST1 missense mutations in autosomal recessive intellectual disability.

NDST1 was recently proposed as a candidate gene for autosomal recessive intellectual disability in two families. It encodes a bifunctional GlcNAc N-deacetylase/N-sulfotransferase with important functions in heparan sulfate biosynthesis. In mice, Ndst1 is crucial for embryonic development and homozygous null mutations are perinatally lethal. We now report on two additional unrelated families with homozygous missense NDST1 mutations. All mutations described to date predict the substitution of conserved amino acids in the sulfotransferase domain, and mutation modeling predicts drastic alterations in the local protein conformation. Comparing the four families, we noticed significant overlap in …

research product

Expanding the clinical spectrum of COL1A1 mutations in different forms of glaucoma

Background Primary congenital glaucoma (PCG) and early onset glaucomas are one of the major causes of children and young adult blindness worldwide. Both autosomal recessive and dominant inheritance have been described with involvement of several genes including CYP1B1, FOXC1, PITX2, MYOC and PAX6. However, mutations in these genes explain only a small fraction of cases suggesting the presence of further candidate genes. Methods To elucidate further genetic causes of these conditions whole exome sequencing (WES) was performed in an Italian patient, diagnosed with PCG and retinal detachment, and his unaffected parents. Sanger sequencing of the complete coding region of COL1A1 was performed in…

research product

Congenital nephrosis, mesangial sclerosis, and distinct eye abnormalities with microcoria: An autosomal recessive syndrome

We observed the occurrence of congenital nephrotic syndrome (CNS) and distinct ocular anomalies in two unrelated families. Eleven children from both families presented with a similar course of renal disease starting with nephrotic syndrome and renal failure prenatally or immediately after birth that resulted in death before the age of 2 months. Kidney histopathology showed diffuse mesangial sclerosis (DMS). Clinically obvious eye abnormalities were recognized in six of the eight patients in whom sufficient clinical data were available. Ocular anomalies included enlarged or large appearing corneae in some cases suggesting buphthalmos, and extremely narrow, nonreactive pupils (microcoria). Pa…

research product