0000000001145851

AUTHOR

Massimo Fagnano

Response to salinity stress of Rhizobium leguminosarum bv. viciae strains in the presence of different legume host plants

We investigated the effect of residual salts from the previous summer’s irrigation on two non-irrigated cover crops—broad bean and common vetch—and on their rhizobial symbiontics. Before sowing, seeds were inoculated with a salt-tolerant strain and a salt-sensitive strain of Rhizobium leguminosarum biovar viciae. An increase in the electrical conductivity of the saturated-soil extract from 2.0 dS m−1 to 6.0 dS m−1 caused a severe reduction of broad bean biomass, while growth of common vetch was almost unaffected by the salinity level. Our results clearly indicate that common vetch as a cover crop may increase the availability of nitrogen in soil more than broad bean also in saline environme…

research product

Changes in soil mineral N content and abundances of bacterial communities involved in N reactions under laboratory conditions as predictors of soil N availability to maize under field conditions.

Proper management of soil fertility requires specific tools for predicting N availability for crops as a consequence of different fertilization strategies. More information is required, especially for organic fertilizers, depending on their mineralization rate, composition, and processing (i.e., fresh or composted manure), as well as their effects on soil properties. Laboratory soil incubations were used as a proxy for understanding plant–soil N dynamics under field conditions. Chemical and microbiological measurements as contents of mineral N, potentially mineralizable N and the abundance of key genes regulating the overall N cycle were used as predictors of mineral N availability to maize…

research product