0000000001148358

AUTHOR

Qing Kenneth Wang

showing 4 related works from this author

Mutations in SLC20A2 link familial idiopathic basal ganglia calcification with phosphate homeostasis.

2012

Familial idiopathic basal ganglia calcification (IBGC) is a genetic condition with a wide spectrum of neuropsychiatric symptoms, including parkinsonism and dementia. Here, we identified mutations in SLC20A2, encoding the type III sodium-dependent phosphate transporter 2 (PiT2), in IBGC-affected families of varied ancestry, and we observed significantly impaired phosphate transport activity for all assayed PiT2 mutants in Xenopus laevis oocytes. Our results implicate altered phosphate homeostasis in the etiology of IBGC.

Genetic Markersmedicine.medical_specialtyGenetic LinkageMolecular Sequence DataMutation MissenseXenopusBasal ganglia calcification610 Medicine & healthPhosphates10052 Institute of PhysiologyXenopus laevis03 medical and health scienceschemistry.chemical_compound0302 clinical medicineAsian PeopleBasal Ganglia Diseases1311 GeneticsCalcinosisGenetic linkageInternal medicineGeneticsmedicineAnimalsHomeostasisHumansBasal ganglia disease030304 developmental biology0303 health sciencesBase SequencebiologySodium-Phosphate Cotransporter Proteins Type IIIParkinsonismCalcinosisSequence Analysis DNAmedicine.diseasePhosphatebiology.organism_classificationPedigreeEndocrinologychemistry10076 Center for Integrative Human PhysiologyOocytes570 Life sciences; biologyLod Score030217 neurology & neurosurgeryHomeostasisChromosomes Human Pair 8Nature genetics
researchProduct

De novo loss-of-function KCNMA1 variants are associated with a new multiple malformation syndrome and a broad spectrum of developmental and neurologi…

2019

Abstract KCNMA1 encodes the large-conductance Ca2+- and voltage-activated K+ (BK) potassium channel α-subunit, and pathogenic gain-of-function variants in this gene have been associated with a dominant form of generalized epilepsy and paroxysmal dyskinesia. Here, we genetically and functionally characterize eight novel loss-of-function (LoF) variants of KCNMA1. Genome or exome sequencing and the participation in the international Matchmaker Exchange effort allowed for the identification of novel KCNMA1 variants. Patch clamping was used to assess functionality of mutant BK channels. The KCNMA1 variants p.(Ser351Tyr), p.(Gly356Arg), p.(Gly375Arg), p.(Asn449fs) and p.(Ile663Val) abolished the …

MaleAtaxiaGenotypeDevelopmental DisabilitiesMutation MissenseBiology03 medical and health sciences0302 clinical medicineNeurodevelopmental disorderProtein DomainsLoss of Function MutationGeneticsmedicineHumansMissense mutationAbnormalities MultipleGenetic Predisposition to DiseaseProtein Interaction Domains and MotifsAlleleLarge-Conductance Calcium-Activated Potassium Channel alpha SubunitsMolecular BiologyAllelesGenetic Association StudiesGenetics (clinical)Loss functionExome sequencing030304 developmental biologyGenetics0303 health sciencesInfant NewbornGeneral MedicineParoxysmal dyskinesiamedicine.diseaseElectrophysiological PhenomenaPedigreePhenotypeAmino Acid SubstitutionSpeech delayFemaleGeneral Articlemedicine.symptom030217 neurology & neurosurgeryHuman Molecular Genetics
researchProduct

Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition) 1

2021

Contains fulltext : 232759.pdf (Publisher’s version ) (Closed access) In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to…

0301 basic medicineProgrammed cell deathSettore BIO/06AutophagosomeAutolysosome[SDV]Life Sciences [q-bio]lnfectious Diseases and Global Health Radboud Institute for Molecular Life Sciences [Radboudumc 4]Autophagy-Related ProteinsReviewComputational biology[SDV.BC]Life Sciences [q-bio]/Cellular BiologyBiologySettore MED/0403 medical and health sciencesstressChaperone-mediated autophagyddc:570AutophagyLC3AnimalsHumanscancerSettore BIO/10Autophagosome; cancer; flux; LC3; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleSet (psychology)Molecular Biologyvacuole.phagophore030102 biochemistry & molecular biologyvacuolebusiness.industryInterpretation (philosophy)AutophagyAutophagosomesneurodegenerationCell BiologyfluxMulticellular organismmacroautophagy030104 developmental biologyKnowledge baselysosomeAutophagosome; LC3; cancer; flux; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleBiological AssayLysosomesbusinessBiomarkers[SDV.MHEP]Life Sciences [q-bio]/Human health and pathology
researchProduct

Autophagy

2021

In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide…

macroautophagy;autophagyAutophagosome[SDV]Life Sciences [q-bio]canceLC3 macroautophagyautophagosomeneurodegeneration;[SDV.BC]Life Sciences [q-bio]/Cellular BiologyAutophagy AutophagosomeNOstress vacuolestressautophagic processesstrerfluxLC3cancerguidelinesAutophagosome; cancer; flux; LC3; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleSettore BIO/06 - Anatomia Comparata E Citologia[SDV.BC] Life Sciences [q-bio]/Cellular BiologyComputingMilieux_MISCELLANEOUSMedaka oryzias latipesphagophorevacuoleQHneurodegenerationAutophagosome cancer flux LC3 lysosome macroautophagy neurodegeneration phagophore stress vacuoleautophagy; autophagic processes; guidelines; autophagosome; cancer; flux; LC3; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuolefluxmacroautophagystress.lysosomeAutophagosome; LC3; cancer; flux; lysosome; macroautophagy; neurodegeneration; phagophore; stress; vacuoleSettore BIO/17 - ISTOLOGIARC
researchProduct