Magnetic breakdown and charge density wave formation: a quantum oscillation study of the rare-earth tritellurides
The rare-earth tritellurides ($R$Te$_3$, where $R$ = La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Y) form a charge density wave state consisting of a single unidirectional charge density wave for lighter $R$, with a second unidirectional charge density wave, perpendicular and in addition to the first, also present at low temperatures for heavier $R$. We present a quantum oscillation study in magnetic fields up to 65T that compares the single charge density wave state with the double charge density wave state both above and below the magnetic breakdown field of the second charge density wave. In the double charge density wave state it is observed that there remain several small, light pockets…