Deep learning algorithms for gravitational waves core-collapse supernova detection
The detection of gravitational waves from core-collapse supernova (CCSN) explosions is a challenging task, yet to be achieved, in which it is key the connection between multiple messengers, including neutrinos and electromagnetic signals. In this work, we present a method for detecting these kind of signals based on machine learning techniques. We tested its robustness by injecting signals in the real noise data taken by the Advanced LIGO-Virgo network during the second observation run, O2. We trained three newly developed convolutional neural networks using time-frequency images corresponding to injections of simulated phenomenological signals, which mimic the waveforms obtained in 3D nume…