0000000001156481

AUTHOR

Milos Nesladek

showing 6 related works from this author

Photoelectrical detection of electron spin resonance of nitrogen-vacancy centres in diamond

2015

The protocols for the control and readout of Nitrogen Vacancy (NV) centres electron spins in diamond offer an advanced platform for quantum computation, metrology and sensing. These protocols are based on the optical readout of photons emitted from NV centres, which process is limited by the yield of photons collection. Here we report on a novel principle for the detection of NV centres magnetic resonance in diamond by directly monitoring spin-preserving electron transitions through measurement of NV centre related photocurrent. The demonstrated direct detection technique offers a sensitive way for the readout of diamond NV sensors and diamond quantum devices on diamond chips. The Photocurr…

PhotonGeneral Physics and AstronomyFOS: Physical sciences02 engineering and technologyElectronengineering.material01 natural sciencesGeneral Biochemistry Genetics and Molecular BiologyArticlelaw.inventionCondensed Matter::Materials Sciencequant-phlawIonizationcond-mat.mes-hall0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)Physics::Atomic and Molecular Clusters010306 general physicsElectron paramagnetic resonancePhysicsPhotocurrentCondensed Matter - Materials ScienceQuantum PhysicsMultidisciplinaryCondensed Matter - Mesoscale and Nanoscale Physicsbusiness.industryDiamondMaterials Science (cond-mat.mtrl-sci)General ChemistryPhotoelectric effect021001 nanoscience & nanotechnologycond-mat.mtrl-sciengineeringOptoelectronicsCharge carrierAtomic physics0210 nano-technologybusinessQuantum Physics (quant-ph)
researchProduct

Fundaments of photoelectric readout of spin states in diamond

2021

Abstract The chapter “Fundaments of photoelectric readout of spin states in diamond” deals with the detection of NV centre spins in diamond using the photoelectric detection of magnetic resonances (PDMR) method, introduced in a series of recent publications. It provides in particular insights into the physics of electronic transitions of the NV center, leading to the free carrier generation, and discusses methodologies how to implement the photocurrent detection principles in the dynamically evolving field of quantum technologies. Recent results on the single electron and the single nuclear spin qubits photoelectric readout are presented, along with a microwave-free NV magnetometry techniqu…

PhysicsSpin statesSpinsPhysics::Instrumentation and DetectorsMagnetometerbusiness.industryDiamondPhotoelectric effectengineering.materiallaw.inventionQuantum technologylawQubitengineeringOptoelectronicsbusinessSpin (physics)
researchProduct

Optical quenching and recovery of photoconductivity in single-crystal diamond

2017

We study the photocurrent induced by pulsed-light illumination (pulse duration is several nanoseconds) of single-crystal diamond containing nitrogen impurities. Application of additional continuous-wave light of the same wavelength quenches pulsed photocurrent. Characterization of the optically quenched photocurrent and its recovery is important for the development of diamond based electronics and sensing. (C) 2017 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license. This work was supported by AFOSR and the DARPA QuASAR program, by NSF Grant No. ECCS-1202258, and by DFG through the DIP program (FO 703/2-1).

TechnologyPhysics and Astronomy (miscellaneous)FOS: Physical sciencesPhysics::Optics02 engineering and technologyengineering.material01 natural sciencesEngineeringOpticsImpuritycond-mat.mes-hall0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)010306 general physicsApplied PhysicsPhotocurrentPhysicsQuenchingCondensed Matter - Mesoscale and Nanoscale Physicsbusiness.industryCondensed Matter::OtherPhotoconductivityDiamondPulse durationQuantum PhysicsNanosecond021001 nanoscience & nanotechnologyCondensed Matter::Mesoscopic Systems and Quantum Hall EffectWavelengthPhysical SciencesengineeringOptoelectronicsphysics.optics0210 nano-technologybusinessOptics (physics.optics)Physics - Optics
researchProduct

On the Possibility of Miniature Diamond-Based Magnetometers Using Waveguide Geometries

2018

Micromachines 9(6), 276 (2018). doi:10.3390/mi9060276

Materials scienceMagnetometerInfraredlcsh:Mechanical engineering and machineryPhysics::Optics02 engineering and technologyengineering.material01 natural sciencesWaveguide (optics)Articlelaw.inventioncompact sensorlawNV-centers0103 physical sciencesMiniaturizationlcsh:TJ1-1570Sensitivity (control systems)Electrical and Electronic Engineering010306 general physicsAbsorption (electromagnetic radiation)[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]business.industryMechanical EngineeringDiamond021001 nanoscience & nanotechnology620Magnetic fielddiamond-based magnetometerControl and Systems EngineeringengineeringOptoelectronicsdiamond-based magnetometer; NV-centers; compact sensorddc:6200210 nano-technologybusinessMicromachines
researchProduct

Extrinsic Effects on the Optical Properties of Surface Color Defects Generated in Hexagonal Boron Nitride Nanosheets

2021

Hexagonal boron nitride (hBN) is a wide-band gap van der Waals material able to host light-emitting centers behaving as single photon sources. Here, we report the generation of color defects in hBN nanosheets dispersed on different kinds of substrates by thermal treatment processes. The optical properties of these defects have been studied using microspectroscopy techniques and far-field simulations of their light emission. Using these techniques, we have found that subsequent ozone treatments of the deposited hBN nanosheets improve the optical emission properties of created defects, as revealed by their zero-phonon linewidth narrowing and reduction of background emission. Microlocalized co…

QuenchingMaterials sciencePhotoluminescencecolor defectsbusiness.industryThermal treatmentSubstrate (electronics)Dielectric2D materialshexagonal boron nitride; 2D materials; color defects; photoluminescence;interfacessymbols.namesakesymbolsOptoelectronicsphotoluminescenceGeneral Materials ScienceLight emissionhexagonal boron nitridevan der Waals forcePhotonicsbusinessResearch Article
researchProduct

Electrical readout microwave-free sensing with diamond

2022

While nitrogen-vacancy (NV-) centers have been extensively investigated in the context of spin-based quantum technologies, the spin-state readout is conventionally performed optically, which may limit miniaturization and scalability. Here, we report photoelectric readout of ground-state cross-relaxation features, which serves as a method for measuring electron spin resonance spectra of nanoscale electronic environments and also for microwave-free sensing. As a proof of concept, by systematically tuning NV centers into resonance with the target electronic system, we extracted the spectra for the P1 electronic spin bath in diamond. Such detection may enable probing optically inactive defects …

Quantum PhysicsFOS: Physical sciencesApplied Physics (physics.app-ph)Physics - Applied PhysicsQuantum Physics (quant-ph)
researchProduct