0000000001157070

AUTHOR

Fabian Feiguin

showing 2 related works from this author

Muscleblind, BSF and TBPH are mislocalized in the muscle sarcomere of a Drosophila myotonic dystrophy model

2012

SummaryMyotonic dystrophy type 1 (DM1) is a genetic disease caused by the pathological expansion of a CTG trinucleotide repeat in the 3' UTR of the DMPK gene. In the DMPK transcripts, the CUG expansions sequester RNA-binding proteins into nuclear foci, including transcription factors and alternative splicing regulators such as MBNL1. MBNL1 sequestration has been associated with key features of DM1. However, the basis behind a number of molecular and histological alterations in DM1 remain unclear. To help identify new pathogenic components of the disease, we carried out a genetic screen using a Drosophila model of DM1 that expresses 480 interrupted CTG repeats, i(CTG)480, and a collection of…

musculoskeletal diseasesSarcomerescongenital hereditary and neonatal diseases and abnormalitiesNeuroscience (miscellaneous)lcsh:MedicineMedicine (miscellaneous)RNA-binding proteinGenes InsectBiologyMyotonic dystrophyGeneral Biochemistry Genetics and Molecular BiologyAnimals Genetically Modifiedchemistry.chemical_compoundImmunology and Microbiology (miscellaneous)RNA interferencelcsh:PathologymedicineMBNL1AnimalsDrosophila ProteinsHumansMyotonic DystrophyGeneticsMuscleslcsh:RAlternative splicingNuclear ProteinsRNA-Binding ProteinsEpistasis Geneticmedicine.diseaseDisease Models AnimalchemistryGene Knockdown TechniquesDrosophilaFemaleRNA InterferenceTrinucleotide repeat expansionTrinucleotide Repeat ExpansionDrosophila Proteinlcsh:RB1-214Genetic screenResearch ArticleDisease Models & Mechanisms
researchProduct

Loss of ISWI Function in Drosophila Nuclear Bodies Drives Cytoplasmic Redistribution of Drosophila TDP-43

2018

Over the past decade, evidence has identified a link between protein aggregation, RNA biology, and a subset of degenerative diseases. An important feature of these disorders is the cytoplasmic or nuclear aggregation of RNA-binding proteins (RBPs). Redistribution of RBPs, such as the human TAR DNA-binding 43 protein (TDP-43) from the nucleus to cytoplasmic inclusions is a pathological feature of several diseases. Indeed, sporadic and familial forms of amyotrophic lateral sclerosis (ALS) and fronto-temporal lobar degeneration share as hallmarks ubiquitin-positive inclusions. Recently, the wide spectrum of neurodegenerative diseases characterized by RBPs functions’ alteration and loss was coll…

0301 basic medicineCytoplasmCytoplasmic inclusionFluorescent Antibody TechniqueProtein aggregationHeterogeneous ribonucleoprotein particleHeterogeneous-Nuclear Ribonucleoproteinslcsh:Chemistry0302 clinical medicineDrosophila Proteinsneurodegenerative diseasesnuclear bodylcsh:QH301-705.5SpectroscopyGeneral MedicinehnRNPsComputer Science ApplicationsCell biologyChromatinTransport proteinDNA-Binding ProteinsProtein Transportmedicine.anatomical_structureDrosophilaDrosophila ProteinProtein BindingImitation SWIBiologyCatalysisArticleInorganic Chemistryomega speckles03 medical and health sciencesmedicineAnimalsPhysical and Theoretical ChemistryMolecular BiologyGenetic Association StudiesCell NucleusOrganic Chemistryta1182Chromatin Assembly and DisassemblyCell nucleus030104 developmental biologylcsh:Biology (General)lcsh:QD1-999gene expression<i>Drosophila</i>; nuclear body; omega speckles; dTDP-43; hnRNPs; omega speckles; neurodegenerative diseases; gene expression; gene regulationdTDP-43gene regulation030217 neurology & neurosurgeryInternational Journal of Molecular Sciences
researchProduct