0000000001157633

AUTHOR

Liviu P. Zârbo

showing 2 related works from this author

Intraband and interband spin-orbit torques in noncentrosymmetric ferromagnets

2015

Intraband and interband contributions to the current-driven spin-orbit torque in magnetic materials lacking inversion symmetry are theoretically studied using Kubo formula. In addition to the current-driven field-like torque ${\bf T}_{\rm FL}= \tau_{\rm FL}{\bf m}\times{\bf u}_{\rm so}$ (${\bf u}_{\rm so}$ being a unit vector determined by the symmetry of the spin-orbit coupling), we explore the intrinsic contribution arising from impurity-independent interband transitions and producing an anti-damping-like torque of the form ${\bf T}_{\rm DL}= \tau_{\rm DL}{\bf m}\times({\bf u}_{\rm so}\times{\bf m})$. Analytical expressions are obtained in the model case of a magnetic Rashba two-dimension…

PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsAnalytical expressionsCondensed matter physicsPoint reflectionFOS: Physical sciencesMagnetic semiconductorCondensed Matter::Mesoscopic Systems and Quantum Hall EffectCondensed Matter Physics3. Good healthElectronic Optical and Magnetic Materialssymbols.namesakeFerromagnetismUnit vectorKubo formulaMesoscale and Nanoscale Physics (cond-mat.mes-hall)symbolsFermi gasHamiltonian (quantum mechanics)Physical Review B
researchProduct

An antidamping spin–orbit torque originating from the Berry curvature

2014

Magnetization switching at the interface between ferromagnetic and paramagnetic metals, controlled by current-induced torques, could be exploited in magnetic memory technologies. Compelling questions arise regarding the role played in the switching by the spin Hall effect in the paramagnet and by the spin-orbit torque originating from the broken inversion symmetry at the interface. Of particular importance are the antidamping components of these current-induced torques acting against the equilibrium-restoring Gilbert damping of the magnetization dynamics. Here, we report the observation of an antidamping spin-orbit torque that stems from the Berry curvature, in analogy to the origin of the …

PhysicsMagnetization dynamicsCondensed matter physicsmedia_common.quotation_subjectPoint reflectionBiomedical EngineeringBioengineeringCondensed Matter::Mesoscopic Systems and Quantum Hall EffectCondensed Matter PhysicsAsymmetryAtomic and Molecular Physics and OpticsCondensed Matter::Materials ScienceParamagnetismMagnetizationFerromagnetismSpin Hall effectCondensed Matter::Strongly Correlated ElectronsGeneral Materials ScienceBerry connection and curvatureElectrical and Electronic Engineeringmedia_commonNature Nanotechnology
researchProduct