0000000001158929

AUTHOR

Abderrahim Hantoute

showing 2 related works from this author

Characterizations of convex approximate subdifferential calculus in Banach spaces

2016

International audience; We establish subdifferential calculus rules for the sum of convex functions defined on normed spaces. This is achieved by means of a condition relying on the continuity behaviour of the inf-convolution of their corresponding conjugates, with respect to any given topology intermediate between the norm and the weak* topologies on the dual space. Such a condition turns out to also be necessary in Banach spaces. These results extend both the classical formulas by Hiriart-Urruty and Phelps and by Thibault.

[ MATH ] Mathematics [math]Mathematics::Functional AnalysisApproximate subdifferentialDual spaceConvex functionsApplied MathematicsGeneral MathematicsBanach spaceUniformly convex spaceSubderivativeApproximate variational principleCalculus rulesLocally convex topological vector spaceCalculusInterpolation spaceMSC: Primary 49J53 52A41 46N10[MATH]Mathematics [math]Reflexive spaceLp spaceMathematics
researchProduct

Subdifferential and conjugate calculus of integral functions with and without qualification conditions

2023

We characterize the subdifferential and the Fenchel conjugate of convex integral functions by means of respectively the approximate subdifferential and the conjugate of the associated convex normal integrands. The results are stated in Suslin locally convex spaces, and do not require continuity-type qualification conditions on the functions, nor special topological or algebraic structures on the index set. Consequently, when confined to separable Banach spaces, the characterizations of such a subdifferential are obtained using only the exact subdifferential of the given integrand but at nearby points. We also provide some simplifications of our formulas when additional continuity conditions…

Subdifferentialsconvex normal integrandsConvex normal integrandsSuslin spacessub-differentialsSuslin spaces. Mathematics Subject Classi…cation (2010): 26B0526J25[MATH.MATH-OC] Mathematics [math]/Optimization and Control [math.OC]49H05Integral functions and functionals
researchProduct