0000000001158929
AUTHOR
Abderrahim Hantoute
Characterizations of convex approximate subdifferential calculus in Banach spaces
International audience; We establish subdifferential calculus rules for the sum of convex functions defined on normed spaces. This is achieved by means of a condition relying on the continuity behaviour of the inf-convolution of their corresponding conjugates, with respect to any given topology intermediate between the norm and the weak* topologies on the dual space. Such a condition turns out to also be necessary in Banach spaces. These results extend both the classical formulas by Hiriart-Urruty and Phelps and by Thibault.
Subdifferential and conjugate calculus of integral functions with and without qualification conditions
We characterize the subdifferential and the Fenchel conjugate of convex integral functions by means of respectively the approximate subdifferential and the conjugate of the associated convex normal integrands. The results are stated in Suslin locally convex spaces, and do not require continuity-type qualification conditions on the functions, nor special topological or algebraic structures on the index set. Consequently, when confined to separable Banach spaces, the characterizations of such a subdifferential are obtained using only the exact subdifferential of the given integrand but at nearby points. We also provide some simplifications of our formulas when additional continuity conditions…