Restricted Uniform Boundedness in Banach Spaces
Precise conditions for a subset A of a Banach space X are known in order that pointwise bounded on A sequences of bounded linear functionals on X are uniformly bounded. In this paper, we study such conditions under the extra assumption that the functionals belong to a given linear subspace Γ of X *. When Γ = X *, these conditions are known to be the same ones assuring a bounded linear operator into X , having A in its image, to be onto. We prove that, for A , deciding uniform boundedness of sequences in Γ is the same property as deciding surjectivity for certain classes of operators. Keywords: Uniform boundedness; thick set; boundedness deciding set Quaestiones Mathematicae 32(2…