Length-scale effects in the nucleation of extended dislocations in nanocrystalline Al by molecular-dynamics simulation
The nucleation of extended dislocations from the grain boundaries in nanocrystalline aluminum is studied by molecular-dynamics simulation. The length of the stacking fault connecting the two Shockley partials that form the extended dislocation, i.e., the dislocation splitting distance, rsplit, depends not only on the stacking-fault energy but also on the resolved nucleation stress. Our simulations for columnar grain microstructures with a grain diameter, d, of up to 70 nm reveal that the magnitude of rsplit relative to d represents a critical length scale controlling the low-temperature mechanical behavior of nanocrystalline materials. For rsplit>d, the first partials nucleated from the bou…