Chaotic Properties of Dilute Two and Three Dimensional Random Lorentz Gases II: Open Systems
We calculate the spectrum of Lyapunov exponents for a point particle moving in a random array of fixed hard disk or hard sphere scatterers, i.e. the disordered Lorentz gas, in a generic nonequilibrium situation. In a large system which is finite in at least some directions, and with absorbing boundary conditions, the moving particle escapes the system with probability one. However, there is a set of zero Lebesgue measure of initial phase points for the moving particle, such that escape never occurs. Typically, this set of points forms a fractal repeller, and the Lyapunov spectrum is calculated here for trajectories on this repeller. For this calculation, we need the solution of the recently…