0000000001162273

AUTHOR

P. Tartaglia

Thermodynamics of supercooled liquids in the inherent structure formalism: a case study

In this article we review the thermodynamics of liquids in the framework of the inherent structure formalism. We then present calculations of the distribution of the basins in the potential energy of a binary Lennard-Jones mixture as a function of temperature. The comparison between the numerical data and the theoretical formalism allows us to evaluate the degeneracy of the inherent structures in a bulk system and to estimate the energy of the lowest energy disordered state (the Kauzmann energy). We find that, around the mode-coupling temperature, the partition function of the liquid is approximated well by the product of two loosely coupled partition functions, one depending on the inheren…

research product

Molecular correlations in a supercooled liquid

We present static and dynamic properties of molecular correlation functions S_{lmn,l'm'n'}(q,t) in a simulated supercooled liquid of water molecules, as a preliminary effort in the direction of solving the molecular mode coupling theory (MMCT) equations for supercooled molecular liquids. The temperature and time dependence of various molecular correlation functions, calculated from 250 ns long molecular dynamics simulations, show the characteristic patterns predicted by MMCT and shed light on the driving mechanism responsible for the slowing down of the molecular dynamics. We also discuss the symmetry properties of the molecular correlation functions which can be predicted on the basis of t…

research product