Robust Transmission for Reconfigurable Intelligent Surface Aided Millimeter Wave Vehicular Communications With Statistical CSI
The integration of reconfigurable intelligent surface (RIS) into millimeter wave (mmWave) vehicular communications offers the possibility to unleash the potential of future proliferating vehicular applications. However, the high-mobility-induced rapidly varying channel state information (CSI) has been making it challenging to obtain the accurate instantaneous CSI (I-CSI) and to cope with the incurable high signaling overhead. The situation may become worse when the RIS with a large number of passive reflecting elements is deployed. To overcome this challenge, we investigate in this paper a robust transmission scheme for the time-varying RIS-aided mmWave vehicular communications, in which, s…
Network Slicing Enabled Resource Management for Service-Oriented Ultra-Reliable and Low-Latency Vehicular Networks
Network slicing has been considered as a promising candidate to provide customized services for vehicular applications that have extremely high requirements of latency and reliability. However, the high mobility of vehicles poses significant challenges to resource management in such a stochastic vehicular environment with time-varying service demands. In this paper, we develop an online network slicing scheduling strategy for joint resource block (RB) allocation and power control in vehicular networks. The long-term time-averaged total system capacity is maximized while guaranteeing strict ultra-reliable and low-latency requirements of vehicle communication links, subject to stability const…