0000000001164928
AUTHOR
B. Arroyo-torres
Radio detection of the young binary HD 160934
Precise determination of dynamical masses of pre-main-sequence (PMS) stars is essential to calibrate stellar evolution models that are widely used to derive theoretical masses of young low-mass objects. Binary stars in young, nearby loose associations are particularly good candidates for this calibration since all members share a common age. Interestingly, some of these young binaries present a persistent and compact radio emission, which makes them excellent targets for astrometric VLBI studies. We aim to monitor the orbital motion of the binary system HD 160934, a member of the AB Doradus moving group. We observed HD 160934 with the Very Large Array and the European VLBI Network at 8.4 an…
VLTI/AMBER observations of cold giant stars: atmospheric structures and fundamental parameters
The main goal of this research is to determine the angular size and the atmospheric structures of cool giant stars and to compare them with hydrostatic stellar model atmospheres, to estimate the fundamental parameters, and to obtain a better understanding of the circumstellar environment. We conducted spectro-interferometric observations of epsilon Oct, beta Peg, NU Pav, and psi Peg in the near-infrared K band (2.13-2.47 microm), and gamma Hya (1.9-2.47 microm) with the VLTI/AMBER instrument at medium spectral resolution. To obtain the fundamental parameters, we compared our data with hydrostatic atmosphere models (PHOENIX). We estimated the Rosseland angular diameters of epsilon Oct, beta …
The atmospheric structure and fundamental parameters of Red Supergiants
We present studies of the atmospheric structure and fundamental properties of the red supergiants (RSGs) VY CMa, AH Sco, UY Sct, and KW Sgr based on near-infrared K -band interferometry obtained with the VLTI/AMBER instrument with a spectral resolution of 1500. In our visibility data, we observe the presence of molecular layers of water and CO in extended atmospheres. For a uniform disk modeling, we observe size increases in the water band centered at 1.9 μ m and in the CO band at 2.3–2.5 μ m, with respect to the near-continuum bandpass (2.20–2.25 μ m). With our spectral resolution, we obtain diameters in the near-continuum, that are free from contamination by molecular layers. Using PHOENI…
Multi-epoch VLTI-PIONIER imaging of the supergiant V766 Cen
Context. The star V766 Cen (=HR 5171A) was originally classified as a yellow hypergiant but lately found to more likely be a 27-36 M red supergiant (RSG). Recent observations indicated a close eclipsing companion in the contact or common-envelope phase. Aims. Here, we aim at imaging observations of V766 Cen to confirm the presence of the close companion. Methods. We used near-infrared H-band aperture synthesis imaging at three epochs in 2014, 2016, and 2017, employing the PIONIER instrument at the Very Large Telescope Interferometer (VLTI). Results. The visibility data indicate a mean Rosseland angular diameter of 4.1 ± 0.8 mas, corresponding to a radius of 1575 ± 400 R. The data show an ex…
A giant exoplanet orbiting a very-low-mass star challenges planet formation models
Surveys have shown that super-Earth and Neptune-mass exoplanets are more frequent than gas giants around low-mass stars, as predicted by the core accretion theory of planet formation. We report the discovery of a giant planet around the very-low-mass star GJ 3512, as determined by optical and near-infrared radial-velocity observations. The planet has a minimum mass of 0.46 Jupiter masses, very high for such a small host star, and an eccentric 204-day orbit. Dynamical models show that the high eccentricity is most likely due to planet-planet interactions. We use simulations to demonstrate that the GJ 3512 planetary system challenges generally accepted formation theories, and that it puts con…
What causes the large extensions of red-supergiant atmospheres? Comparisons of interferometric observations with 1-D hydrostatic, 3-D convection, and 1-D pulsating model atmospheres
We present the atmospheric structure and the fundamental parameters of three red supergiants, increasing the sample of RSGs observed by near-infrared spectro-interferometry. Additionally, we test possible mechanisms that may explain the large observed atmospheric extensions of RSGs. We carried out spectro-interferometric observations of 3 RSGs in the near-infrared K-band with the VLTI/AMBER instrument at medium spectral resolution. To comprehend the extended atmospheres, we compared our observational results to predictions by available hydrostatic PHOENIX, available 3-D convection, and new 1-D self-excited pulsation models of RSGs. Our near-infrared flux spectra are well reproduced by the P…
VLTI/AMBER spectro-interferometry of the late-type supergiants V766 Cen (=HR 5171 A), σ Oph, BM Sco, and HD 206859
Aims. We add four warmer late-type supergiants to our previous spectro-interferometric studies of red giants and supergiants. Methods. We measure the near-continuum angular diameter, derive fundamental parameters, discuss the evolutionary stage, and study extended atmospheric atomic and molecular layers. Results. V766 Cen (=HR 5171 A) is found to be a high-luminosity (log L/L = 5.8 ± 0.4) source of effective temperature 4290 ± 760 K and radius 1490 ± 540 R, located in the Hertzsprung-Russell (HR) diagram close to both the Hayashi limit and Eddington limit; this source is consistent with a 40 M evolutionary track without rotation and current mass 27-36 M. V766 Cen exhibits Na i in emission a…
The atmospheric structure and fundamental parameters of the red supergiants AH Sco, UY Sct and KW Sgr
We present the atmospheric structure and the fundamental properties of the red supergiants (RSGs) AH Sco, UY Sct, and KW Sgr based on VLTI/AMBER observations. We carried out spectro-interferometric observations of AH Sco, UY Sct, and KW Sgr in the near-infrared K band with the VLTI/AMBER instrument, and compared the data to a new grid of hydrostatic PHOENIX model atmospheres. In our visibility data, we observe molecular layers of water and CO in extended atmospheres. For a uniform disk modeling, we observe size increases at the water band of 10% to 25% and at the CO bandheads of 20%-35% with respect to the near continuum bandpass. The PHOENIX atmosphere models predict the spectra and the co…