0000000001165314

AUTHOR

Miriam Verwei

showing 2 related works from this author

Oral biopharmaceutics tools – Time for a new initiative – An introduction to the IMI project OrBiTo

2013

OrBiTo is a new European project within the IMI programme in the area of oral biopharmaceutics tools that includes world leading scientists from nine European universities, one regulatory agency, one non-profit research organization, four SMEs together with scientists from twelve pharmaceutical companies. The OrBiTo project will address key gaps in our knowledge of gastrointestinal (GI) drug absorption and deliver a framework for rational application of predictive biopharmaceutics tools for oral drug delivery. This will be achieved through novel prospective investigations to define new methodologies as well as refinement of existing tools. Extensive validation of novel and existing biopharm…

Physiologically based pharmacokinetic modellingComputer scienceProcess (engineering)Chemistry Pharmaceuticalmedia_common.quotation_subjectAdministration OralPharmaceutical SciencePharmacologyModels BiologicalPermeabilityQuality by DesignBiopharmaceuticsAnimalsHumansComputer SimulationPharmacokineticsQuality (business)Product (category theory)Program Developmentmedia_commonDosage FormsActive ingredientbusiness.industryBiopharmaceuticsGastrointestinal TractEngineering managementIntestinal AbsorptionPharmaceutical PreparationsSolubilityNew product developmentbusinessEuropean Journal of Pharmaceutical Sciences
researchProduct

The effect of chitosan on the bioaccessibility and intestinal permeability of acyclovir

2019

Chitosan is object of pharmaceutical research as a candidate permeability enhancer. However, chitosan was recently shown to reduce the oral bioavailability of acyclovir in humans. The effect of chitosan on two processes determining the oral bioavailability of acyclovir, bioaccessibility and intestinal absorption, was now investigated. Acyclovir's bioaccessibility was studied using the dynamic TNO gastro-Intestinal Model (TIM-1). Four epithelial models were used for permeability experiments: a Caco-2 cell model in absence and presence of mucus and both rat and porcine excised intestinal segments. Study concentrations of acyclovir (0.8 g/l) and chitosan (1.6 g/l and 4 g/l) were in line with t…

SwineAcyclovirPharmaceutical ScienceBiocompatible Materials02 engineering and technologyPharmacology030226 pharmacology & pharmacyIN-VITRO EVALUATIONIntestinal absorptionChitosanchemistry.chemical_compound0302 clinical medicineDrug InteractionsPharmacology & PharmacyGeneral MedicinePermeation021001 nanoscience & nanotechnologyMOLECULAR-WEIGHTJejunum0210 nano-technologyLife Sciences & BiomedicineBiotechnologyAbsorption (skin)Antiviral AgentsPermeability03 medical and health sciencesOrgan Culture TechniquesIn vivomedicineAnimalsHumansBiologyABSORPTION ENHANCERSChitosanScience & TechnologyIntestinal permeabilityCACO-2Caco-2medicine.diseaseTRANSPORTRatsBioavailabilityMODELIntestinal AbsorptionchemistryCOMMON EXCIPIENTSCaco-2Intestinal tissue segmentsCaco-2 CellsTNO gastro-Intestinal Model (TIM-1)SYSTEMPOORLY ABSORBABLE DRUGSTRACTEuropean Journal of Pharmaceutics and Biopharmaceutics
researchProduct