0000000001167577

AUTHOR

Sébastien Guenneau

showing 9 related works from this author

Isotropic Chiral Acoustic Phonons in 3D Quasicrystalline Metamaterials.

2020

International audience; The elastic properties of three-dimensional (3D) crystalline mechanical metamaterials, unlike those of amorphous structures, are generally strongly anisotropic—even in the long-wavelength limit and for highly symmetric crystals. Aiming at isotropic linear elastic wave propagation, we therefore study 3D periodic approximants of 3D icosahedral quasicrystalline mechanical metamaterials consisting of uniaxial chiral metarods. Considering the increasing order of the approximants, we approach nearly isotropic effective speeds of sound and isotropic acoustical activity. The latter is directly connected to circularly polarized 3D metamaterial chiral acoustic phonons—for all …

Physics[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph]Condensed matter physicsWave propagationIcosahedral symmetryLinear elasticityIsotropyGeneral Physics and AstronomyMetamaterialPhysics::OpticsAcoustic Phonons01 natural sciencesAmorphous solid[SPI.MAT]Engineering Sciences [physics]/Materials0103 physical sciences[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics010306 general physicsPhysical review letters
researchProduct

Acoustic Topological Circuitry in Square and Rectangular Phononic Crystals

2021

International audience; We systematically engineer a series of square and rectangular phononic crystals to create experimental realizations of complex topological phononic circuits. The exotic topological transport observed is wholly reliant upon the underlying structure which must belong to either a square or rectangular lattice system and not to any hexagonal-based structure. The phononic system chosen consists of a periodic array of square steel bars which partitions acoustic waves in water over a broadband range of frequencies (∼0.5MHz). An ultrasonic transducer launches an acoustic pulse which propagates along a domain wall, before encountering a nodal point, from which the acoustic si…

[SPI.NANO] Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph]Crystal systemFOS: Physical sciencesGeneral Physics and Astronomy02 engineering and technology[SPI.MAT] Engineering Sciences [physics]/MaterialsTopology01 natural sciencesSignal09 EngineeringSquare (algebra)Physics AppliedWAVE-GUIDE[SPI.MAT]Engineering Sciences [physics]/MaterialsDESIGNcond-mat.mes-hallMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciences[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics010306 general physicsElectronic circuit[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph]Physics[SPI.ACOU] Engineering Sciences [physics]/Acoustics [physics.class-ph]BENDS[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]Science & Technology02 Physical SciencesCondensed Matter - Mesoscale and Nanoscale PhysicsPhysicsAcoustic waveEDGE STATES021001 nanoscience & nanotechnology[PHYS.MECA.ACOU]Physics [physics]/Mechanics [physics]/Acoustics [physics.class-ph]Pulse (physics)Cardinal pointSPINPhysical Sciences2-DIMENSIONAL PHOTONIC CRYSTALHIGH TRANSMISSIONUltrasonic sensor0210 nano-technologyPhysical Review Applied
researchProduct

Mapping acoustical activity in 3D chiral mechanical metamaterials onto micropolar continuum elasticity

2020

Abstract We compare the phonon band structures and chiral phonon eigenmodes of a recently experimentally realized three-dimensional (3D) cubic chiral metamaterial architecture to results from linear micropolar elasticity, an established generalization of classical linear Cauchy elasticity. We achieve very good qualitative agreement concerning the anisotropies of the eigenfrequencies, the anisotropies of the eigenmode properties of the acoustic branches, as well as with respect to the observed pronounced sample-size dependence of acoustical activity and of the static push-to-twist conversion effects. The size dependence of certain properties, that is, the loss of scale invariance, is a finge…

PhysicsPhononMechanical EngineeringMetamaterialCauchy distribution02 engineering and technologyAcoustic waveScale invariance021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciences010305 fluids & plasmasClassical mechanicsMechanics of MaterialsNormal mode0103 physical sciencesElasticity (economics)0210 nano-technologyAnisotropyJournal of the Mechanics and Physics of Solids
researchProduct

Static chiral Willis continuum mechanics for three-dimensional chiral mechanical metamaterials

2019

International audience; Recent static experiments on twist effects in chiral three-dimensional mechanical metamaterials have been discussed in the context of micropolar Eringen continuum mechanics, which is a generalization of linear Cauchy elasticity. For cubic symmetry, Eringen elasticity comprises nine additional parameters with respect to linear Cauchy elasticity, of which three directly influence chiral effects. Here, we discuss the behavior of the static case of an alternative generalization of linear Cauchy elasticity, the Willis equations. We show that in the homogeneous static cubic case, only one additional parameter with respect to linear Cauchy elasticity results, which directly…

PhysicsCharacteristic lengthContinuum mechanicsCauchy distributionMetamaterial02 engineering and technology021001 nanoscience & nanotechnology01 natural sciences[PHYS.MECA.ACOU]Physics [physics]/Mechanics [physics]/Acoustics [physics.class-ph][PHYS.MECA.MEMA]Physics [physics]/Mechanics [physics]/Mechanics of materials [physics.class-ph]Classical mechanicsHomogeneous0103 physical sciences[PHYS.MECA.SOLID]Physics [physics]/Mechanics [physics]/Solid mechanics [physics.class-ph][SPI.OPTI]Engineering Sciences [physics]/Optics / PhotonicTwistElasticity (economics)[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics010306 general physics0210 nano-technology
researchProduct

Elastodynamic behavior of mechanical cloaks designed by direct lattice transformations

2020

International audience; <h2 class="section-title u-h3 u-margin-l-top u-margin-xs-bottom" style="box-sizing: border-box; padding: 0px; font-weight: 400 !important; color: #505050; font-size: 1.2rem !important; line-height: 1.333 !important; font-family: NexusSerif, Georgia, 'Times New Roman', Times, STIXGeneral, 'Cambria Math', 'Lucida Sans Unicode', 'Microsoft Sans Serif', 'Segoe UI Symbol', 'Arial Unicode MS', serif; font-style: normal; font-variant-ligatures: normal; font-variant-caps: normal; letter-spacing: normal; orphans: 2; text-align: start; text-indent: 0px; text-transform: none; white-space: normal; widows: 2; word-spacing: 0px; -webkit-text-stroke-width: 0px; text-decoration-styl…

Physics[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph]PhononScatteringApplied MathematicsGeneral Physics and AstronomyCloakingPhysics::Optics01 natural sciences010305 fluids & plasmas[PHYS.MECA.ACOU]Physics [physics]/Mechanics [physics]/Acoustics [physics.class-ph][SPI.MAT]Engineering Sciences [physics]/MaterialsComputational MathematicsClassical mechanicsElectromagnetismModeling and SimulationObstacleLattice (order)0103 physical sciencesBroadband[PHYS.MECA.SOLID]Physics [physics]/Mechanics [physics]/Solid mechanics [physics.class-ph][SPI.OPTI]Engineering Sciences [physics]/Optics / PhotonicElasticity (economics)[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics010301 acoustics
researchProduct

Experimental observations of topologically guided water waves within non-hexagonal structures

2020

International audience; We investigate symmetry-protected topological water waves within a strategically engineered square lattice system. Thus far, symmetry protected topological modes in hexagonal systems have primarily been studied in electromagnetism and acoustics, i.e., dispersionless media. Herein, we show experimentally how crucial geometrical properties of square structures allow for topological transport that is ordinarily forbidden within conventional hexagonal structures. We perform numerical simulations that take into account the inherent dispersion within water waves and devise a topological insulator that supports symmetry-protected transport along the domain walls. Our measur…

Physics and Astronomy (miscellaneous)Structure (category theory)FOS: Physical sciences02 engineering and technology01 natural sciences09 EngineeringSquare (algebra)[SPI.MECA.MEFL]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Fluids mechanics [physics.class-ph][SPI.MAT]Engineering Sciences [physics]/MaterialsElectromagnetism10 Technologycond-mat.mes-hallMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciences[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsDispersion (water waves)ComputingMilieux_MISCELLANEOUSApplied Physics010302 applied physicsPhysics[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph]02 Physical SciencesCondensed Matter - Mesoscale and Nanoscale PhysicsFluid Dynamics (physics.flu-dyn)Physics - Fluid Dynamics021001 nanoscience & nanotechnologySquare latticeComputational physicsphysics.flu-dynTopological insulatorDomain (ring theory)0210 nano-technologyEnergy (signal processing)
researchProduct

Cloaking In-Plane Elastic Waves with Swiss Rolls

2020

We propose a design of cylindrical cloak for coupled in-plane shear waves consisting of concentric layers of sub-wavelength resonant stress-free inclusions shaped as Swiss rolls. The scaling factor between inclusions&rsquo

Shear waveschiral elastic cloaktransformation elastodynamicsCloakingFOS: Physical sciencesPhysics::Optics02 engineering and technologyApplied Physics (physics.app-ph)lcsh:Technology01 natural sciencesArticle[SPI.MAT]Engineering Sciences [physics]/Materials0103 physical sciences[SPI.MECA.MEMA]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Mechanics of materials [physics.class-ph]elastodynamic cloakGeneral Materials Science[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronicslcsh:Microscopy010306 general physicslcsh:QC120-168.85Mathematical physicsPhysics[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph]lcsh:QH201-278.5swiss rollslcsh:TCloakPhysics - Applied PhysicsComputational Physics (physics.comp-ph)Physics::Classical Physics021001 nanoscience & nanotechnologyWillis couplingIn planelcsh:TA1-2040lcsh:Descriptive and experimental mechanicslcsh:Electrical engineering. Electronics. Nuclear engineeringCosserat mediumlcsh:Engineering (General). Civil engineering (General)0210 nano-technologylcsh:TK1-9971Physics - Computational Physics
researchProduct

The influence of building interactions on seismic and elastic body waves

2019

We outline some recent research advances on the control of elastic waves in thin and thick plates, that have occurred since the large scale experiment [S. Brûlé, Phys. Rev. Lett. 112, 133901 (2014)] that demonstrated significant interaction of surface seismic waves with holes structuring sedimentary soils at the meter scale. We further investigate the seismic wave trajectories of compressional body waves in soils structured with buildings. A significant substitution of soils by inclusions, acting as foundations, raises the question of the effective dynamic properties of these structured soils. Buildings, in the case of perfect elastic conditions for both soil and buildings, are shown to int…

Earthquake engineeringTechnologyScale (ratio)elastic cloakingBody wavesCITYMaterials ScienceCloakingMaterials Science Multidisciplinary01 natural sciencesSeismic wavePhysics::Geophysics03 medical and health sciencesSeismic metamaterial0103 physical sciences[PHYS.MECA.SOLID]Physics [physics]/Mechanics [physics]/Solid mechanics [physics.class-ph]General Materials Science010306 general physics030304 developmental biology0303 health sciencesScience & TechnologyhomogenisationCLOAKINGphysics.class-phCondensed Matter Physicslcsh:QC1-999[PHYS.MECA.ACOU]Physics [physics]/Mechanics [physics]/Acoustics [physics.class-ph][SPI.GCIV]Engineering Sciences [physics]/Civil EngineeringMechanics of Materialssite-city interaction[SPI.OPTI]Engineering Sciences [physics]/Optics / Photoniclcsh:Electrical engineering. Electronics. Nuclear engineeringearthquake engineeringlcsh:TK1-9971Seismologylcsh:Physics
researchProduct

Dispersion engineering for photonic crystal based nanophotonic devices

2012

International audience

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics][PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]ComputingMilieux_MISCELLANEOUS
researchProduct