6533b857fe1ef96bd12b3c37

RESEARCH PRODUCT

Experimental observations of topologically guided water waves within non-hexagonal structures

Mehul P. MakwanaVincent LaudeGuillaume DupontNicolas LaforgeRichard V. CrasterMuamer KadicSébastien Guenneau

subject

Physics and Astronomy (miscellaneous)Structure (category theory)FOS: Physical sciences02 engineering and technology01 natural sciences09 EngineeringSquare (algebra)[SPI.MECA.MEFL]Engineering Sciences [physics]/Mechanics [physics.med-ph]/Fluids mechanics [physics.class-ph][SPI.MAT]Engineering Sciences [physics]/MaterialsElectromagnetism10 Technologycond-mat.mes-hallMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciences[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsDispersion (water waves)ComputingMilieux_MISCELLANEOUSApplied Physics010302 applied physicsPhysics[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph]02 Physical SciencesCondensed Matter - Mesoscale and Nanoscale PhysicsFluid Dynamics (physics.flu-dyn)Physics - Fluid Dynamics021001 nanoscience & nanotechnologySquare latticeComputational physicsphysics.flu-dynTopological insulatorDomain (ring theory)0210 nano-technologyEnergy (signal processing)

description

International audience; We investigate symmetry-protected topological water waves within a strategically engineered square lattice system. Thus far, symmetry protected topological modes in hexagonal systems have primarily been studied in electromagnetism and acoustics, i.e., dispersionless media. Herein, we show experimentally how crucial geometrical properties of square structures allow for topological transport that is ordinarily forbidden within conventional hexagonal structures. We perform numerical simulations that take into account the inherent dispersion within water waves and devise a topological insulator that supports symmetry-protected transport along the domain walls. Our measurements, viewed using a high-speed camera under stroboscopic illumination, unambiguously demonstrate the valley-locked transport of water waves within a non-hexagonal structure. Due to the tunability of the energy’s directionality by geometry, our results could be used for developing highly efficient energy harvesters, filters, and beam-splitters within dispersive media.

https://hal.archives-ouvertes.fr/hal-03414296