0000000001167678
AUTHOR
Cosimo Lacava
Advanced nonlinear signal processing in silicon-based waveguides
This talk presents recent progress in optical signal processing based on compact waveguides fabricated mainly using silicon germanium alloys. Applications include supercontinuum generation, wavelength conversion and signal regeneration.
Exploring titanium dioxide as a new photonic platform
International audience; We report the development of titanium dioxide-based waveguides for applications in the near-and mid-infrared. Thanks to embedded metal grating couplers, we demonstrate error free 10 Gbit/s optical transmissions at 1.55 and 2 µm. We also demonstrate octave-spanning supercontinuum in cm-long waveguides. We explore the way to improve such waveguides through optimized fabrication process.
Si and Si-rich silicon-nitride waveguides for optical transmissions and nonlinear applications around 2 µm
We show that cm-long silicon and silicon-rich silicon nitride waveguides with subwavelength transverse dimensions can efficiently sustain high-speed transmissions at 2 μm. We report the transmission of a 10 Gbit/s signal with negligible power penalty. Parametric conversion in both continuous and pulsed pump regimes is also demonstrated, as well as the spectral broadening of picosecond pulses.