0000000001167680

AUTHOR

Bart Kuyken

showing 6 related works from this author

Various materials for 2-µm telecom applications

2018

National audience

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics][PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]ComputingMilieux_MISCELLANEOUS
researchProduct

Demonstration of high speed optical transmission at 2 µm in various material based waveguides

2018

International audience

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics][PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]ComputingMilieux_MISCELLANEOUS
researchProduct

High speed optical transmission at 2 μm in subwavelength waveguides made of various materials

2018

We report the transmission of a 10 Gbps telecommunication signal at 2 μm in waveguides made of three different materials: Si, SiGe and TiO2. Bit error rates below 10−9 can be achieved after transmission in the devices with subwavelength dimensions.

Materials sciencebusiness.industry02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesSignal010309 opticsBit (horse)Transmission (telecommunications)0103 physical sciencesOptoelectronics0210 nano-technologybusinessRefractive indexAdvanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF)
researchProduct

Si and Si-rich silicon-nitride waveguides for optical transmissions and nonlinear applications around 2 µm

2019

We show that cm-long silicon and silicon-rich silicon nitride waveguides with subwavelength transverse dimensions can efficiently sustain high-speed transmissions at 2 μm. We report the transmission of a 10 Gbit/s signal with negligible power penalty. Parametric conversion in both continuous and pulsed pump regimes is also demonstrated, as well as the spectral broadening of picosecond pulses.

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics]Materials scienceSiliconPhysics::Instrumentation and DetectorsPhysics::Opticschemistry.chemical_element02 engineering and technology01 natural sciencesSignal010309 opticsOptical pumpingchemistry.chemical_compound0103 physical sciencesComputingMilieux_MISCELLANEOUS[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]business.industryNonlinear optics021001 nanoscience & nanotechnologyTransverse planechemistrySilicon nitridePicosecondOptoelectronics0210 nano-technologybusinessDoppler broadening
researchProduct

High speed optical transmission at 2 µm in subwavelength waveguides made of various materials

2018

International audience

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics][PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]ComputingMilieux_MISCELLANEOUS
researchProduct

Exploring titanium dioxide as a new photonic platform

2019

International audience; We report the development of titanium dioxide-based waveguides for applications in the near-and mid-infrared. Thanks to embedded metal grating couplers, we demonstrate error free 10 Gbit/s optical transmissions at 1.55 and 2 µm. We also demonstrate octave-spanning supercontinuum in cm-long waveguides. We explore the way to improve such waveguides through optimized fabrication process.

[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics]Nonlinear integrated optics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]Integrated optical materialsSupercontinuum generationTitanium Dioxide waveguidesOptical Communications
researchProduct