0000000001167837
AUTHOR
Annette Brunsen
Photocrosslinkable dextran hydrogel films as substrates for osteoblast and endothelial cell growth
Functional hydrogel films on solid supports are versatile materials with large potential for cell growth and tissue engineering. Here, we report on a modular approach to generate functional hydrogel composite films for endothelial and osteoblast cell co-culture. The polymer network of the parent hydrogel was formed by a dextran derivative (BP-CMD), which contained carboxymethyl (CM) groups for further chemical functionalization and benzophenone (BP) moieties as a photocrosslinkable unit. BP-CMD could be synthesized by three different routes, first with the benzophenone unit attached via an amide bond, or second by an ether bond, or third as an ion pair between the benzophenone ammonium salt…
Magnetic Composite Thin Films of FexOy Nanoparticles and Photocrosslinked Dextran Hydrogels
Abstract Magnetic hydrogel composites are promising candidates for a broad field of applications from medicine to mechanical engineering. Here, surface-attached composite films of magnetic nanoparticles (MNP) and a polymeric hydrogel (HG) were prepared from magnetic iron oxide nanoparticles and a carboxymethylated dextran with photoreactive benzophenone substituents. A blend of the MNP and the dextran polymer was prepared by mixing in solution, and after spin-coating and drying the blend film was converted into a stable MNP–HG composite by photocrosslinking through irradiation with UV light. The bulk composite material shows strong mobility in a magnetic field, imparted by the MNPs. By util…