0000000001167839
AUTHOR
Bernhard Menges
Photocrosslinkable dextran hydrogel films as substrates for osteoblast and endothelial cell growth
Functional hydrogel films on solid supports are versatile materials with large potential for cell growth and tissue engineering. Here, we report on a modular approach to generate functional hydrogel composite films for endothelial and osteoblast cell co-culture. The polymer network of the parent hydrogel was formed by a dextran derivative (BP-CMD), which contained carboxymethyl (CM) groups for further chemical functionalization and benzophenone (BP) moieties as a photocrosslinkable unit. BP-CMD could be synthesized by three different routes, first with the benzophenone unit attached via an amide bond, or second by an ether bond, or third as an ion pair between the benzophenone ammonium salt…
Hydrogel-supported protein-tethered bilayer lipid membranes: a new approach toward polymer-supported lipid membranes
Polymer-supported bilayer lipid membranes offer great opportunities for the investigation of functional membrane proteins. Here we present a new approach in this direction by introducing a thin hydrogel layer as a soft ‘cushion’ on indium–tin oxide (ITO), providing a smooth, functional surface to form the protein-tethered BLM (ptBLM). ITO was used as a transparent electrode, enabling simultaneous implementation of electrochemical and optical waveguide techniques. The hydrogel poly(N-(2-hydroxyethyl)acrylamide-co-5-acrylamido-1-carboxypentyl-iminodiacetate-co-4-benzoylphenyl methacrylate) (P(HEAAm-co-NTAAAm-co-MABP)) was functionalized with the nickel chelating nitrilotriacetic acid (NTA) gr…