0000000001168836
AUTHOR
N. V. Kuznetsov
Lock-in range of classical PLL with impulse signals and proportionally-integrating filter
In the present work the model of PLL with impulse signals and active PI filter in the signal's phase space is described. For the considered PLL the lock-in range is computed analytically and obtained result are compared with numerical simulations.
Coexistence of hidden attractors and multistability in counterexamples to the Kalman conjecture
The Aizerman and Kalman conjectures played an important role in the theory of global stability for control systems and set two directions for its further development – the search and formulation of sufficient stability conditions, as well as the construction of counterexamples for these conjectures. From the computational perspective the latter problem is nontrivial, since the oscillations in counterexamples are hidden, i.e. their basin of attraction does not intersect with a small neighborhood of an equilibrium. Numerical calculation of initial data of such oscillations for their visualization is a challenging problem. Up to now all known counterexamples to the Kalman conjecture were const…
Lock-in range of PLL-based circuits with proportionally-integrating filter and sinusoidal phase detector characteristic
In the present work PLL-based circuits with sinusoidal phase detector characteristic and active proportionally-integrating (PI) filter are considered. The notion of lock-in range -- an important characteristic of PLL-based circuits, which corresponds to the synchronization without cycle slipping, is studied. For the lock-in range a rigorous mathematical definition is discussed. Numerical and analytical estimates for the lock-in range are obtained.
Analysis of oscillations in discontinuous Lurie systems via LPRS method
We discuss advantages and limitations of the harmonic balance method and the locus of a perturbed relay system (LPRS) method in the problem of finding periodic oscillations. In this paper we present the results of using harmonic balance method and LPRS method while investigating a 3rd order dynamic system in Lurie form. In this system a symmetric periodic oscillation is found, while other two asymmetric periodic motions are not found using both methods. peerReviewed
Estimation of Lyapunov dimension for the Chen and Lu systems
Nowadays various estimates of Lyapunov dimension of Lorenz-like systems attractors are actively developed. Within the frame of this study the question arises whether it is possible to obtain the corresponding estimates of dimension for the Chen and Lu systems using the reduction of them to the generalized Lorenz system. In the work (Chen and Yang, 2013) Leonov's method was applied for the estimation of Lyapunov dimension, and as a consequence the Lyapunov dimension of attractors of the Chen and Lu systems with the classical parameters was estimated. In the present work an inaccuracy in (Chen and Yang, 2013) is corrected and it is shown that the revised domain of parameters, where the estima…
Nonlinear analysis of charge-pump phase-locked loop: the hold-in and pull-in ranges
In this paper a fairly complete mathematical model of CP-PLL, which reliable enough to serve as a tool for credible analysis of dynamical properties of these circuits, is studied. We refine relevant mathematical definitions of the hold-in and pull-in ranges related to the local and global stability. Stability analysis of the steady state for the charge-pump phase locked loop is non-trivial: straight-forward linearization of available CP-PLL models may lead to incorrect conclusions, because the system is not smooth near the steady state and may experience overload. In this work necessary details for local stability analysis are presented and the hold-in range is computed. An upper estimate o…
A lower-bound estimate of the Lyapunov dimension for the global attractor of the Lorenz system
In this short report, for the classical Lorenz attractor we demonstrate the applications of the Pyragas time-delayed feedback control technique and Leonov analytical method for the Lyapunov dimension estimation and verification of the Eden's conjecture. The problem of reliable numerical computation of the finite-time Lyapunov dimension along the trajectories over large time intervals is discussed.
A Survey on Dynamic Analysis of the Costas Loop
This survey is devoted to the dynamic analysis of the Costas loop. In particular the acquisition process is analyzed in great detail. Acquision is most conventiently described by a number of frequency and time parameters such as lock-in range, lock-in time, pull-in range, pull-in time, and hold-in range. While for the classical PLL equations for all these parameters have been derived (many of them are approximations, some even crude approximations), this has not yet been carried out for the Costas loop. It is the aim of this analysis to close this gap. The paper starts with an overview on mathematical and physical models (exact and simplified) of the different variants of the Costas loop, c…
On lower-bound estimates of the Lyapunov dimension and topological entropy for the Rossler systems
In this paper, on the example of the Rössler systems, the application of the Pyragas time-delay feedback control technique for verification of Eden’s conjecture on the maximum of local Lyapunov dimension, and for the estimation of the topological entropy is demonstrated. To this end, numerical experiments on computation of finite-time local Lyapunov dimensions and finite-time topological entropy on a Rössler attractor and embedded unstable periodic orbits are performed. The problem of reliable numerical computation of the mentioned dimension-like characteristics along the trajectories over large time intervals is discussed. peerReviewed
Non-linear analysis of a modified QPSK Costas loop
A Costas loop is one of the classical phase-locked loop based circuits, which demodulates data and recovers carrier from the input signal. The Costas loop is essentially a nonlinear control system and its nonlinear analysis is a challenging task. In this article for a modified QPSK Costas loop we analyze the hold-in, pull-in and lock-in ranges. New procedure for estimation of the lock-in range is considered and compared with previously known approach. peerReviewed
Finite-time and exact Lyapunov dimension of the Henon map
This work is devoted to further consideration of the Henon map with negative values of the shrinking parameter and the study of transient oscillations, multistability, and possible existence of hidden attractors. The computation of the finite-time Lyapunov exponents by different algorithms is discussed. A new adaptive algorithm for the finite-time Lyapunov dimension computation in studying the dynamics of dimension is used. Analytical estimates of the Lyapunov dimension using the localization of attractors are given. A proof of the conjecture on the Lyapunov dimension of self-excited attractors and derivation of the exact Lyapunov dimension formula are revisited.
Homoclinic orbit and hidden attractor in the Lorenz-like system describing the fluid convection motion in the rotating cavity
In this paper a Lorenz-like system, describing the process of rotating fluid convection, is considered. The present work demonstrates numerically that this system, also like the classical Lorenz system, possesses a homoclinic trajectory and a chaotic self-excited attractor. However, for considered system, unlike the classical Lorenz one, along with self-excited attractor a hidden attractor can be localized. Analytical-numerical localization of hidden attractor is presented.
A note on finite-time Lyapunov dimension of the Rossler attractor
For the R\"ossler system we verify Eden's conjecture on the maximum of local Lyapunov dimension. We compute numerically finite-time local Lyapunov dimensions on the R\"ossler attractor and embedded unstable periodic orbits. The UPO computation is done by Pyragas time-delay feedback control technique.
The Lorenz system : hidden boundary of practical stability and the Lyapunov dimension
On the example of the famous Lorenz system, the difficulties and opportunities of reliable numerical analysis of chaotic dynamical systems are discussed in this article. For the Lorenz system, the boundaries of global stability are estimated and the difficulties of numerically studying the birth of self-excited and hidden attractors, caused by the loss of global stability, are discussed. The problem of reliable numerical computation of the finite-time Lyapunov dimension along the trajectories over large time intervals is discussed. Estimating the Lyapunov dimension of attractors via the Pyragas time-delayed feedback control technique and the Leonov method is demonstrated. Taking into accoun…
Hidden attractors in aircraft control systems with saturated inputs
In the paper, the control problem with limitations on the magnitude and rate of the control action in aircraft control systems, is studied. Existence of hidden oscillations in the case of actuator position and rate limitations is demonstrated by the examples of piloted aircraft pilot involved oscillations (PIO) phenomenon and the airfoil flutter suppression system.
Time-delay control for stabilization of the Shapovalov mid-size firm model
Control and stabilization of irregular and unstable behavior of dynamic systems (including chaotic processes) are interdisciplinary problems of interest to a variety of scientific fields and applications. Using the control methods allows improvements in forecasting the dynamics of unstable economic processes and offers opportunities for governments, central banks, and other policy makers to modify the behaviour of the economic system to achieve its best performance. One effective method for control of chaos and computation of unstable periodic orbits (UPOs) is the unstable delay feedback control (UDFC) approach, suggested by K. Pyragas. This paper proposes the application of the Pyragas' me…
The Lyapunov dimension, convergency and entropy for a dynamical model of Chua memristor circuit
For the study of chaotic dynamics and dimension of attractors the concepts of the Lyapunov exponents was found useful and became widely spread. Such characteristics of chaotic behavior, as the Lyapunov dimension and the entropy rate, can be estimated via the Lyapunov exponents. In this work an analytical approach to the study of the Lyapunov dimension, convergency and entropy for a dynamical model of Chua memristor circuit is demonstrated.
Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion
In this tutorial, we discuss self-excited and hidden attractors for systems of differential equations. We considered the example of a Lorenz-like system derived from the well-known Glukhovsky--Dolghansky and Rabinovich systems, to demonstrate the analysis of self-excited and hidden attractors and their characteristics. We applied the fishing principle to demonstrate the existence of a homoclinic orbit, proved the dissipativity and completeness of the system, and found absorbing and positively invariant sets. We have shown that this system has a self-excited attractor and a hidden attractor for certain parameters. The upper estimates of the Lyapunov dimension of self-excited and hidden attra…