0000000001169914

AUTHOR

Tomasz Adamowicz

showing 3 related works from this author

Hardy spaces and quasiconformal maps in the Heisenberg group

2023

We define Hardy spaces $H^p$, $00$ such that every $K$-quasiconformal map $f:B \to f(B) \subset \mathbb{H}^1$ belongs to $H^p$ for all $0<p<p_0(K)$. Second, we give two equivalent conditions for the $H^p$ membership of a quasiconformal map $f$, one in terms of the radial limits of $f$, and one using a nontangential maximal function of $f$. As an application, we characterize Carleson measures on $B$ via integral inequalities for quasiconformal mappings on $B$ and their radial limits. Our paper thus extends results by Astala and Koskela, Jerison and Weitsman, Nolder, and Zinsmeister, from $\mathbb{R}^n$ to $\mathbb{H}^1$. A crucial difference between the proofs in $\mathbb{R}^n$ and $\mathbb{…

Hardy spacesMathematics - Complex VariablesMetric Geometry (math.MG)quasiconformal mapsHeisenberg groupPrimary: 30L10 Secondary: 30C65 30H10Functional Analysis (math.FA)Mathematics - Functional AnalysiskvasikonformikuvauksetMathematics - Metric GeometryFOS: MathematicsHardyn avaruudetComplex Variables (math.CV)Carleson measuresAnalysis
researchProduct

The Radó–Kneser–Choquet theorem for $p$-harmonic mappings between Riemannian surfaces

2020

In the planar setting the Rad\'o-Kneser-Choquet theorem states that a harmonic map from the unit disk onto a Jordan domain bounded by a convex curve is a diffeomorphism provided that the boundary mapping is a homeomorphism. We prove the injectivity criterion of Rad\'o-Kneser-Choquet for $p$-harmonic mappings between Riemannian surfaces. In our proof of the injecticity criterion we approximate the $p$-harmonic map with auxiliary mappings that solve uniformly elliptic systems. We prove that each auxiliary mapping has a positive Jacobian by a homotopy argument. We keep the maps injective all the way through the homotopy with the help of the minimum principle for a certain subharmonic expressio…

subharmonicityPure mathematicsFUNCTIONALSMINIMIZERSGeneral Mathematicsp-harmonic mappings01 natural sciencesJacobin matriisitMathematics - Analysis of PDEsMaximum principleBOUNDARY-REGULARITYSYSTEMSMAPSRiemannian surface111 MathematicsFOS: MathematicsComplex Variables (math.CV)0101 mathematicsMathematicsCurvatureMathematics - Complex VariablesHomotopy010102 general mathematicsConvex curveHarmonic mapUnit diskHomeomorphismInjective functionEXISTENCEUNIQUENESSmaximum principlecurvature35J47 (Primary) 58E20 35J70 35J92 (Secondary)ELLIPTIC PROBLEMSDiffeomorphismJacobianunivalentAnalysis of PDEs (math.AP)Revista Matemática Iberoamericana
researchProduct

A Koebe distortion theorem for quasiconformal mappings in the Heisenberg group

2017

We prove a Koebe distortion theorem for the average derivative of a quasiconformal mapping between domains in the sub-Riemannian Heisenberg group $\mathbb{H}_1$. Several auxiliary properties of quasiconformal mappings between subdomains of $\mathbb{H}_1$ are proven, including distortion of balls estimates and local BMO-estimates for the logarithm of the Jacobian of a quasiconformal mapping. Applications of the Koebe theorem include diameter bounds for images of curves, comparison of integrals of the average derivative and the operator norm of the horizontal differential, as well as the study of quasiconformal densities and metrics in domains in $\mathbb{H}_1$. The theorems are discussed for…

Mathematics - Complex VariablesMathematics::Complex VariablesMetric Geometry (math.MG)Heisenberg groupQuasiconformal mappingKvasikonformikuvausKoebe distortion theoremMathematics - Analysis of PDEsMathematics - Metric GeometryFOS: MathematicsHeisenbergin ryhmäComplex Variables (math.CV)30L10 (Primary) 30C65 30F45 (Secondary)Analysis of PDEs (math.AP)
researchProduct