0000000001169914

AUTHOR

Tomasz Adamowicz

Hardy spaces and quasiconformal maps in the Heisenberg group

We define Hardy spaces $H^p$, $00$ such that every $K$-quasiconformal map $f:B \to f(B) \subset \mathbb{H}^1$ belongs to $H^p$ for all $0<p<p_0(K)$. Second, we give two equivalent conditions for the $H^p$ membership of a quasiconformal map $f$, one in terms of the radial limits of $f$, and one using a nontangential maximal function of $f$. As an application, we characterize Carleson measures on $B$ via integral inequalities for quasiconformal mappings on $B$ and their radial limits. Our paper thus extends results by Astala and Koskela, Jerison and Weitsman, Nolder, and Zinsmeister, from $\mathbb{R}^n$ to $\mathbb{H}^1$. A crucial difference between the proofs in $\mathbb{R}^n$ and $\mathbb{…

research product

The Radó–Kneser–Choquet theorem for $p$-harmonic mappings between Riemannian surfaces

In the planar setting the Rad\'o-Kneser-Choquet theorem states that a harmonic map from the unit disk onto a Jordan domain bounded by a convex curve is a diffeomorphism provided that the boundary mapping is a homeomorphism. We prove the injectivity criterion of Rad\'o-Kneser-Choquet for $p$-harmonic mappings between Riemannian surfaces. In our proof of the injecticity criterion we approximate the $p$-harmonic map with auxiliary mappings that solve uniformly elliptic systems. We prove that each auxiliary mapping has a positive Jacobian by a homotopy argument. We keep the maps injective all the way through the homotopy with the help of the minimum principle for a certain subharmonic expressio…

research product

A Koebe distortion theorem for quasiconformal mappings in the Heisenberg group

We prove a Koebe distortion theorem for the average derivative of a quasiconformal mapping between domains in the sub-Riemannian Heisenberg group $\mathbb{H}_1$. Several auxiliary properties of quasiconformal mappings between subdomains of $\mathbb{H}_1$ are proven, including distortion of balls estimates and local BMO-estimates for the logarithm of the Jacobian of a quasiconformal mapping. Applications of the Koebe theorem include diameter bounds for images of curves, comparison of integrals of the average derivative and the operator norm of the horizontal differential, as well as the study of quasiconformal densities and metrics in domains in $\mathbb{H}_1$. The theorems are discussed for…

research product