0000000001170225

AUTHOR

U. Cotti

showing 24 related works from this author

Measurement of the energy spectrum of cosmic rays above 10^18 eV using the Pierre Auger Observatory

2010

We report a measurement of the flux of cosmic rays with unprecedented precision and Statistics using the Pierre Auger Observatory Based on fluorescence observations in coincidence with at least one Surface detector we derive a spectrum for energies above 10(18) eV We also update the previously published energy spectrum obtained with the surface detector array The two spectra are combined addressing the systematic uncertainties and, in particular. the influence of the energy resolution on the spectral shape The spectrum can be described by a broken power law E-gamma with index gamma = 3 3 below the ankle which is measured at log(10)(E-ankle/eV) = 18 6 Above the ankle the spectrum is describe…

Nuclear and High Energy Physics[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Radiación CósmicaAstronomyAstrophysics::High Energy Astrophysical Phenomenaenergy spectrumFluxFOS: Physical sciencesCosmic rayAstrophysicsElectronSURFACE DETECTORUPPER LIMITENERGIAPHOTON FRACTION01 natural sciencesSpectral lineAugerNuclear physicscosmic raysObservatorySHOWERS0103 physical sciencesHigh-Energy Cosmic Ray010306 general physicsCosmic raysCiencias ExactasPhysicsPierre Auger ObservatoryHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsPhysics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Spectral densityFísicaPierre Auger ObservatoryCosmic rayELECTRONS3. Good healthPierre Auger Observatory; Cosmic rays; Energy spectrumSIMULATIONExperimental High Energy PhysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFluorescenciaARRAYFísica nuclearEnergy spectrumAstrophysics - High Energy Astrophysical PhenomenaSYSTEM
researchProduct

Evidence of 200 TeV photons from HAWC J1825-134

2020

The Earth is bombarded by ultra-relativistic particles, known as cosmic rays (CRs). CRs with energies up to a few PeV (=10$^{15}$ eV), the knee in the particle spectrum, are believed to have a Galactic origin. One or more factories of PeV CRs, or PeVatrons, must thus be active within our Galaxy. The direct detection of PeV protons from their sources is not possible since they are deflected in the Galactic magnetic fields. Hundred TeV $\gamma$-rays from decaying $\pi^0$, produced when PeV CRs collide with the ambient gas, can provide the decisive evidence of proton acceleration up to the knee. Here we report the discovery by the High Altitude Water Cherenkov (HAWC) observatory of the $\gamma…

PhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Photon010504 meteorology & atmospheric sciencesProtonMolecular cloudAstrophysics::High Energy Astrophysical PhenomenaAstrophysics::Instrumentation and Methods for AstrophysicsFOS: Physical sciencesAstronomy and AstrophysicsCosmic rayAstrophysicsRadiation7. Clean energy01 natural sciencesGalaxy13. Climate actionSpace and Planetary ScienceObservatory0103 physical sciencesPhysics::Accelerator PhysicsAstrophysics - High Energy Astrophysical Phenomena010303 astronomy & astrophysicsCherenkov radiation0105 earth and related environmental sciences
researchProduct

The Lateral Trigger Probability function for the Ultra-High Energy Cosmic Ray Showers detected by the Pierre Auger Observatory

2011

In this paper we introduce the concept of Lateral Trigger Probability (LTP) function, i.e., the probability for an Extensive Air Shower (EAS) to trigger an individual detector of a ground based array as a function of distance to the shower axis, taking into account energy, mass and direction of the primary cosmic ray. We apply this concept to the surface array of the Pierre Auger Observatory consisting of a 1.5 km spaced grid of about 1600 water Cherenkov stations. Using Monte Carlo simulations of ultra-high energy showers the LTP functions are derived for energies in the range between 1017 and 1019 eV and zenith angles up to 65. A parametrization combining a step function with an exponenti…

[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE][PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]AstronomyAstrophysics::High Energy Astrophysical PhenomenaExtensive air showerUltra-high Energy Cosmic RayMonte Carlo methodFOS: Physical sciencesCosmic rayEXTENSIVE AIR-SHOWERSTrigger performance01 natural sciences7. Clean energyUltra-high Energy Cosmic Rays; Pierre Auger Observatory; Extensive air showers; Trigger performance; Surface detector; Hybrid detectorHigh Energy Physics - ExperimentAugerNuclear physicsHigh Energy Physics - Experiment (hep-ex)0103 physical sciencesUltra-high-energy cosmic ray010303 astronomy & astrophysicsCiencias ExactasZenithCherenkov radiationUltra-High Energy Cosmic RaysPhysicsPierre Auger ObservatoryHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsPhysicsHybrid detector[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Surface detectorAstrophysics::Instrumentation and Methods for AstrophysicsFísicaAstronomy and AstrophysicsPierre Auger ObservatoryUltra-high Energy Cosmic Rays[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Air showerExperimental High Energy PhysicsSIMULATIONComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFísica nuclearExtensive Air ShowersAstrophysics - High Energy Astrophysical PhenomenaRAIOS CÓSMICOS
researchProduct

Limit on the diffuse flux of ultrahigh energy tau neutrinos with the surface detector of the Pierre Auger Observatory

2009

Data collected at the Pierre Auger Observatory are used to establish an upper limit on the diffuse flux of tau neutrinos in the cosmic radiation. Earth-skimming ντ may interact in the Earth's crust and produce a τ lepton by means of charged-current interactions. The τ lepton may emerge from the Earth and decay in the atmosphere to produce a nearly horizontal shower with a typical signature, a persistent electromagnetic component even at very large atmospheric depths. The search procedure to select events induced by τ decays against the background of normal showers induced by cosmic rays is described. The method used to compute the exposure for a detector continuously growing with time is de…

ACTIVE GALACTIC NUCLEIASTROPHYSICS[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Nuclear and High Energy PhysicsActive galactic nucleusPhysics::Instrumentation and DetectorsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayPROPAGATIONAstrophysics7. Clean energy01 natural sciencesLeptonSpectral lineSettore FIS/04 - Fisica Nucleare e SubnucleareAugerSEARCHTau neutrino0103 physical sciencesTau neutrinoOSCILLATIONS010306 general physicsCiencias ExactasHigh Energy Astrophysical Phenomena (astro-ph.HE)AIR-SHOWERSPierre Auger ObservatoryPhysicsSPECTRUM010308 nuclear & particles physicsPhysics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Astrophysics::Instrumentation and Methods for AstrophysicsFísicaultrahigh energy cosmic rays ; tau neutrinos ; Pierre Auger ObservatoryDiffuse fluxPierre Auger ObservatoryPERFORMANCECOSMIC-RAYScosmic radiation13. Climate actionTELESCOPESHigh Energy Physics::ExperimentNeutrinoAstrophysics - High Energy Astrophysical PhenomenaLeptonPhysical Review D
researchProduct

Search for signatures of magnetically-induced alignment in the arrival directions measured by the Pierre Auger Observatory

2011

We present the results of an analysis of data recorded at the Pierre Auger Observatory in which we search for groups of directionally-aligned events (or ‘multiplets’) which exhibit a correlation between arrival direc- tion and the inverse of the energy. These signatures are expected from sets of events coming from the same source after having been deflected by intervening coherent magnetic fields. The observation of several events from the same source would open the possibility to accurately reconstruct the position of the source and also measure the integral of the component of the magnetic field orthogonal to the trajectory of the cos- mic rays. We describe the largest multiplets found an…

[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Field (physics)Astronomyultra-high energy cosmic rays; Pierre Auger Observatory; arrival directionsFOS: Physical sciencesCosmic rayAstrophysics01 natural sciencesCosmic RayAugerPosition (vector)0103 physical sciencesFIELDPierre auger observatory010303 astronomy & astrophysicsUltra-high energy cosmic rayDETECTORCiencias ExactasHigh Energy Astrophysical Phenomena (astro-ph.HE)Pierre Auger ObservatoryPhysicsArrival directions010308 nuclear & particles physics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]PhysicsIsotropyFísicaAstronomy and AstrophysicsASTROFÍSICAUltra-high energy cosmic raysMagnetic fieldExperimental High Energy PhysicsData analysisComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFísica nuclearAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]RAIOS CÓSMICOSArrival directionUltra-High Energy Cosmic Ray
researchProduct

The Fluorescence Detector of the Pierre Auger Observatory

2010

The Pierre Auger Observatory is a hybrid detector for ultra-high energy cosmic rays. It combines a surface array to measure secondary particles at ground level together with a fluorescence detector to measure the development of air showers in the atmosphere above the array. The fluorescence detector comprises 24 large telescopes specialized for measuring the nitrogen fluorescence caused by charged particles of cosmic ray air showers. In this paper we describe the components of the fluorescence detector including its optical system, the design of the camera, the electronics, and the systems for relative and absolute calibration. We also discuss the operation and the monitoring of the detecto…

Physics::Instrumentation and DetectorsAstronomyAUGERPIERRE7. Clean energy01 natural sciencesAugerFluorescence detectorData acquisitionDEPENDENCEATMOSPHERIC MULTIPLE-SCATTERINGInstrumentationPhysicsDetectorAstrophysics::Instrumentation and Methods for AstrophysicsCOSMIC-RAYSUltra High Energy Cosmic RayCharged particleLIGHTSIMULATIONComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFísica nuclearAstrophysics - Instrumentation and Methods for AstrophysicsAUGERNuclear and High Energy Physics[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Astrophysics::High Energy Astrophysical PhenomenaMeasure (physics)FOS: Physical sciencesCosmic rayEXTENSIVE AIR-SHOWERSENERGIAFluorescence spectroscopyOptics0103 physical sciencesCosmic rays; Fluorescence detectorRECONSTRUCTION010306 general physicsInstrumentation and Methods for Astrophysics (astro-ph.IM)Cosmic raysPierre Auger ObservatoryPIERRE010308 nuclear & particles physicsbusiness.industryFísicaULTRA-HIGH ENERGY[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Experimental High Energy PhysicsPierre Auger observatoryCAPABILITIESHigh Energy Physics::Experimentbusiness
researchProduct

A study of the effect of molecular and aerosol conditions in the atmosphere on air fluorescence measurements at the Pierre Auger Observatory

2010

The air fluorescence detector of the Pierre Auger Observatory is designed to perforin calorimetric measurements of extensive air showers created by Cosmic rays of above 10(18) eV. To correct these measurements for the effects introduced by atmospheric fluctuations, the Observatory contains a group Of monitoring instruments to record atmospheric conditions across the detector site, ail area exceeding 3000 km(2). The atmospheric data are used extensively in the reconstruction of air showers, and are particularly important for the correct determination of shower energies and the depths of shower maxima. This paper contains a summary of the molecular and aerosol conditions measured at the Pierr…

Angstrom exponentAstronomyAstrophysics01 natural sciencesAugerCROSS-SECTIONSCOSMIC-RAY SHOWERSObservatoryDEPENDENCEHigh-Energy Cosmic Ray010303 astronomy & astrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Lidar[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]ANGSTROM EXPONENTPierre Auger ObservatoryBi-static lidarELECTRONSComputingMethodologies_DOCUMENTANDTEXTPROCESSINGMULTIPLE-SCATTERINGLight emissionFísica nuclearAstrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical PhenomenaLIGHT-EMISSIONAstrophysics - Cosmology and Nongalactic Astrophysics[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Cosmology and Nongalactic Astrophysics (astro-ph.CO)Extensive air showerFOS: Physical sciencesCosmic raySURFACE DETECTORAir fluorescence method0103 physical sciencesExtensive air showersRECONSTRUCTIONAerosolInstrumentation and Methods for Astrophysics (astro-ph.IM)Cosmic raysPierre Auger ObservatoryAerosolsCalorimeter (particle physics)Atmospheric effect010308 nuclear & particles physicsAtmosphereFísicaAstronomy and AstrophysicsCosmic rays; Extensive air showers; Air fluorescence method; Atmosphere; Aerosols; Lidar; Bi-static lidarCosmic rayNITROGENAir showerFluorescence Telescopes13. Climate actionExperimental High Energy PhysicsAEROSSOL
researchProduct

Search for First Harmonic Modulation in the Right Ascension Distribution of Cosmic Rays Detected at the Pierre Auger Observatory

2011

We present the results of searches for dipolar-type anisotropies in different energy ranges above 2.5 × 1017 eV with the surface detector array of the Pierre Auger Observatory, reporting on both the phase and the amplitude measurements of the first harmonic modulation in the right-ascension distribution. Upper limits on the amplitudes are obtained, which provide the most stringent bounds at present, being below 2% at 99% C.L. for EeV energies. We also compare our results to those of previous experiments as well as with some theoretical expectations.

Large scale anisotripies[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Auger ExperimentAstronomyAstrophysics::High Energy Astrophysical PhenomenaPhase (waves)FOS: Physical sciencesCosmic rayAstrophysicsanisotropySURFACE DETECTOR01 natural sciencesCosmic RayAugerLarge scale anisotropiesObservatoryLarge scale anisotropie0103 physical sciences010303 astronomy & astrophysicsUltra-high energy cosmic rayCiencias ExactasHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsPierre Auger ObservatoryFÍSICA DE PARTÍCULASUltra High Energy Cosmic Rays.010308 nuclear & particles physicsORIGINPhysics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Astrophysics::Instrumentation and Methods for AstrophysicsFísicaAstronomy and AstrophysicsPierre Auger ObservatoryUltra-high energy cosmic raysENERGY-SPECTRUMRadiación cósmicaAnisotropíaAmplitudeHarmonicsUltra-high energy cosmic rays; Large scale anisotropies; Pierre Auger ObservatoryExperimental High Energy PhysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGARRAYFísica nuclearRight ascensionAstrophysics - High Energy Astrophysical Phenomena
researchProduct

Observation of the suppression of the flux of cosmic rays above 4x10^19eV

2008

The energy spectrum of cosmic rays above 2.5 × 10¹⁸ eV, derived from 20,000 events recorded at the Pierre Auger Observatory, is described. The spectral index γ of the particle flux, J ∝ E-γ, at energies between 4 × 10¹⁸ eV and 4 × 10¹⁹ eV is 2.69 ± 0.02(stat) ± 0.06(syst), steepening to 4.2 ± 0.4(stat) ± 0.06(syst) at higher energies. The hypothesis of a single power law is rejected with a significance greater than 6 standard deviations. The data are consistent with the prediction by Greisen and by Zatsepin and Kuz'min.

[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Astrophysics::High Energy Astrophysical Phenomenaenergy spectrumFOS: Physical sciencesGeneral Physics and AstronomyFluxOsservatorio Pierre Augerspectral indexCosmic rayparticle fluxAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsEXTENSIVE AIR-SHOWERSAstrophysicsUPPER LIMIT01 natural sciencesPower lawAugerNuclear physicsENERGY[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Raggi cosmicicosmic rays0103 physical sciencesddc:550Particle flux010303 astronomy & astrophysicsCiencias ExactasPhysicsPierre Auger ObservatorySpectral indexSPECTRUM[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]010308 nuclear & particles physicsAstrophysics (astro-ph)Settore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for AstrophysicsFísicaEnergia ultra altaARRAYHigh Energy Physics::ExperimentSciami atmosferici estesiEnergy (signal processing)
researchProduct

Update on the correlation of the highest energy cosmic rays with nearby extragalactic matter

2010

Data collected by the Pierre Auger Observatory through 31 August 2007 showed evidence for anisotropy in the arrival directions of cosmic rays above the Greisen-Zatsepin-Kuz'min energy threshold, 6 x 10(19) eV. The anisotropy was measured by the fraction of arrival directions that are less than 3.1 degrees from the position of an active galactic nucleus within 75 Mpc (using the Veron-Cetty and Veron 12th catalog). An updated measurement of this fraction is reported here using the arrival directions of cosmic rays recorded above the same energy threshold through 31 December 2009. The number of arrival directions has increased from 27 to 69, allowing a more precise measurement. The correlating…

AstronomyAstrophysicsUltra High Energy Cosmic ray01 natural scienceslaw.inventionObservatorylawAnisotropy010303 astronomy & astrophysicsmedia_commonHigh Energy Astrophysical Phenomena (astro-ph.HE)Physics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]UHECRAstrophysics::Instrumentation and Methods for AstrophysicsPierre Auger ObservatoryGZKAnisotropíaGALAXIESNEUTRINOSGreisen–Zatsepin–Kuz’minComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFísica nuclearAstrophysics - High Energy Astrophysical PhenomenaACTIVE GALACTIC NUCLEIHIPASS CATALOG[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Active galactic nucleusRadiación Cósmicamedia_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayAstrophysics::Cosmology and Extragalactic AstrophysicsTelescope0103 physical sciencesCosmic raysCiencias ExactasAstrophysics::Galaxy AstrophysicsPierre Auger ObservatorySPECTRUM010308 nuclear & particles physicsAstronomyFísicaAstronomy and AstrophysicsCosmic rayGalaxyCorrelation with astrophysical sourcesCosmic rays; UHECR; Anisotropy; Pierre Auger Observatory; Extra-galactic; GZKSkyExperimental High Energy PhysicsAnisotropyExtra-galactic
researchProduct

The exposure of the hybrid detector of the Pierre Auger Observatory

2010

The Pierre Auger Observatory is a detector for ultra-high energy cosmic rays. It consists of a surface array to measure secondary particles at ground level and a fluorescence detector to measure the development of air showers in the atmosphere above the array. The ‘‘hybrid” detection mode combines the information from the two subsystems. We describe the determination of the hybrid exposure for events observed by the fluorescence telescopes in coincidence with at least one water-Cherenkov detector of the surface array. A detailed knowledge of the time dependence of the detection operations is crucial for an accurate evaluation of the exposure. We discuss the relevance of monitoring data coll…

Physics::Instrumentation and DetectorsAstronomy01 natural sciencesCoincidenceAugerFluorescence detectorData acquisitionAuger experimentHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsFÍSICA DE PARTÍCULASSettore INF/01 - InformaticaCascada atmosférica extensaPhysicsDetectorAstrophysics::Instrumentation and Methods for AstrophysicsPierre Auger Observatoryultra high energy cosmic rays; Pierre Auger Observatory; extensive air showers; trigger; exposure; fluorescence detector; hybridENERGY-SPECTRUMRadiación cósmicaSIMULATIONComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFluorescenciaFísica nuclearAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Astrophysics::High Energy Astrophysical PhenomenaExtensive air showerMeasure (physics)FOS: Physical sciencesCosmic rayCosmic RayFluorescence spectroscopyUltra high energy cosmic rayExposureNuclear physicsOpticsSHOWERS0103 physical sciencesExtensive air showers010306 general physicsCiencias ExactasPierre Auger Observatory010308 nuclear & particles physicsbusiness.industryFísicaAstronomy and AstrophysicsUltra high energy cosmic raysHybrid[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]fluxTriggerExperimental High Energy PhysicsbusinessSYSTEMAstroparticle Physics
researchProduct

Atmospheric effects on extensive air showers observed with the Surface Detector of the Pierre Auger Observatory

2009

Atmospheric parameters, such as pressure (P), temperature (T) and density (ρ ∝ P/T), affect the development of extensive air showers initiated by energetic cosmic rays. We have studied the impact of atmospheric variations on extensive air showers by means of the surface detector of the Pierre Auger Observatory. The rate of events shows a ∼ 10% seasonal modulation and ∼ 2% diurnal one. We find that the observed behaviour is explained by a model including the effects associated with the variations of P and ρ. The former affects the longitudinal development of air showers while the latter influences the Molière radius and hence the lateral distribution of the shower particles. The model is val…

[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]: 96.50.sdRadiación CósmicaIMPACTAstronomyExtensive air showerFOS: Physical sciencesCosmic rayAstrophysicsExtensive air showers; UHECR; Atmosphere; Weather01 natural sciencesCOSMIC-RAY CASCADESAugerAtmosphereENERGYObservatory0103 physical sciencesExtensive air showersRECONSTRUCTION96.50.sf010303 astronomy & astrophysicsMolière radiusWeatherInstrumentation and Methods for Astrophysics (astro-ph.IM)96.50.sbPierre Auger ObservatoryPhysics010308 nuclear & particles physicsAtmosphereUHECRDetectorFísicaAstronomy and AstrophysicsPresión AtmosféricaPROFILES[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Longitudinal developmentATMOSFERA (ESTUDO)13. Climate actionExperimental High Energy PhysicsSIMULATIONComputingMethodologies_DOCUMENTANDTEXTPROCESSINGClimaAstrophysics - Instrumentation and Methods for Astrophysics
researchProduct

HAWC J2227+610 and its association with G106.3+2.7, a new potential Galactic PeVatron

2020

We present the detection of VHE gamma-ray emission above 100 TeV from HAWC J2227+610 with the HAWC observatory. Combining our observations with previously published results by VERITAS, we interpret the gamma-ray emission from HAWC J2227+610 as emission from protons with a lower limit in their cutoff energy of 800 TeV. The most likely source of the protons is the associated supernova remnant G106.3+2.7, making it a good candidate for a Galactic PeVatron. However, a purely leptonic origin of the observed emission cannot be excluded at this time.

HAWC - Abteilung HintonPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)Hydrogen compounds010504 meteorology & atmospheric sciencesAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstronomy and AstrophysicsAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesLower limitGalaxySpace and Planetary ScienceObservatory0103 physical sciencesSupernova remnantAstrophysics - High Energy Astrophysical Phenomena010303 astronomy & astrophysicsAstrophysics::Galaxy Astrophysics0105 earth and related environmental sciences
researchProduct

Erratum to "Atmospheric effects on extensive air showers observed with the surface detector of the Pierre Auger observatory"[Astroparticle Physics 32…

2010

The Pierre Auger Collaboration... K.B. Barber... J.A. Bellido... R.W. Clay... B.R. Dawson... V.C. Holmes... J. Sorokin... P. Wahrlich... B.J. Whelan... M.G. Winnick... et al.

Astroparticle physicsPhysicsPierre Auger Observatory[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]010308 nuclear & particles physicsAstronomyDetectorAstronomyAstronomy and AstrophysicsAstrophysics01 natural sciencesAuger[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Experimental High Energy Physics0103 physical sciences010303 astronomy & astrophysicsComputingMilieux_MISCELLANEOUSAstroparticle Physics
researchProduct

Correlation of the highest-energy cosmic rays with nearby extragalactic objects.

2007

Using data collected at the Pierre Auger Observatory during the past 3.7 years, we demonstrated a correlation between the arrival directions of cosmic rays with energy above ~ 6x10^{19} electron volts and the positions of active galactic nuclei (AGN) lying within ~ 75 megaparsecs. We rejected the hypothesis of an isotropic distribution of these cosmic rays with at least a 99% confidence level from a prescribed a priori test. The correlation we observed is compatible with the hypothesis that the highest energy particles originate from nearby extragalactic sources whose flux has not been substantially reduced by interaction with the cosmic background radiation. AGN or objects having a similar…

Active galactic nucleus[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]AstronomyAstrophysics::High Energy Astrophysical Phenomenaparticle source [cosmic radiation]Cosmic background radiationFOS: Physical sciencesFluxOsservatorio Pierre AugerCosmic rayanisotropyAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics01 natural sciences[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Raggi cosmici0103 physical sciencesUltra-high-energy cosmic ray010303 astronomy & astrophysicsBackground radiationNuclei galattivi attiviPhysicsPierre Auger ObservatorySPECTRUMMultidisciplinary[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]010308 nuclear & particles physicsMedicine (all); MultidisciplinaryMedicine (all)Settore FIS/01 - Fisica SperimentaleAstrophysics (astro-ph)angular dependence [cosmic radiation]Astrophysics::Instrumentation and Methods for AstrophysicsFísicaEnergia ultra altaExperimental High Energy Physicsddc:500Energy (signal processing)experimental results
researchProduct

Measurement of the Depth of Maximum of Extensive Air Showers above 10(18) eV

2010

We describe the measurement of the depth of maximum, Xmax, of the longitudinal development of air showers induced by cosmic rays. Almost four thousand events above 10¹⁸ eV observed by the fluorescence detector of the Pierre Auger Observatory in coincidence with at least one surface detector station are selected for the analysis. The average shower maximum was found to evolve with energy at a rate of (106⁺³⁵₋₂₁) g/cm²/decade below 1018.24 ± 0.05 eV and (24 ± 3) g/cm²/decade above this energy. The measured shower-to-shower fluctuations decrease from about 55 to 26 g/cm². The interpretation of these results in terms of the cosmic ray mass composition is briefly discussed.

[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]FLUORESCENCE LIGHTGeneral Physics and AstronomyPierre Auger Observatory; depth of maximum; fluorescence detector; cosmic raysFOS: Physical sciencesCosmic rayChemical CompositionAstrophysicsMass compositionENERGIA01 natural sciencesCoincidenceAugerNuclear physicsPhysics and Astronomy (all)cosmic rays0103 physical sciencesRECONSTRUCTIONHigh-Energy Cosmic Ray010303 astronomy & astrophysicsDETECTORCiencias ExactasPierre Auger ObservatoryPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)MeasurementSPECTRUM010308 nuclear & particles physicsPhysics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Pierre Auger ExperimentDetectorPrimary compositionFísicaPierre Auger ObservatoryCOSMIC-RAYSCosmic raylongitudinal developmentLongitudinal developmentRESOLUTIONFísica nuclearfluorescenceAstrophysics - High Energy Astrophysical PhenomenaenergyPhysical Review Letters
researchProduct

Upper limit on the cosmic-ray photon flux above 1019 eV using the surface detector of the Pierre Auger Observatory

2008

A method is developed to search for air showers initiated by photons using data recorded by the surface detector of the Auger Observatory. The approach is based on observables sensitive to the longitudinal shower development, the signal risetime and the curvature of the shower front. Applying this method to the data, upper limits on the flux of photons of 3.8 x 10-3, 2.5 x 10-3; and 2.2 x 10-3 km-2 sr-1 yr-1 above 1019 eV, 2 x 1019 eV; and 4 x 1019 eV are derived, with corresponding limits on the fraction of photons being 2.0%, 5.1%, and 31% (all limits at 95% c.l.). These photon limits disfavor certain exotic models of sources of cosmic rays. The results also show that the approach adopted…

Photon[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]AstronomyFluxFOS: Physical sciencesOsservatorio Pierre AugerCosmic rayFotonesAstrophysicsAstrophysics7. Clean energy01 natural sciencesAugerNuclear physics[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]High Energy Physics - Phenomenology (hep-ph)Raggi cosmiciultra high energy photonsCascada atmosféricaObservatory0103 physical sciences010306 general physicsCiencias ExactasPierre Auger ObservatoryPhysics[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]010308 nuclear & particles physicsAstrophysics (astro-ph)FísicaAstronomy and AstrophysicsPierre Auger ObservatoryEnergia ultra altaCosmic rayHigh Energy Physics - PhenomenologyPair production13. Climate actionFotoniExperimental High Energy Physicsddc:540flux upper limitNeutrinoSciami atmosferici estesi
researchProduct

Search for ultrahigh energy neutrinos in highly inclined events at the Pierre Auger Observatory

2011

Erratum: Phys. Rev. D 85, 029902(E) (2012) [http://dx.doi.org/10.1103/PhysRevD.85.029902]

Physics::Instrumentation and DetectorsSolar neutrinoAstrophysicsUPPER LIMITPHOTON FRACTION01 natural sciences7. Clean energyneutrinoObservatoryHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsORIGINPhysics[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]pionAstrophysics::Instrumentation and Methods for AstrophysicsPierre Auger ObservatoryCOSMIC-RAYScosmic ray detectorsand other elementary particle detectorsCosmic neutrino backgroundNEUTRINOSFísica nuclearNeutrinoAstrophysics - High Energy Astrophysical PhenomenaFLUXFERMI-LATNuclear and High Energy Physics[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]TELESCOPEAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic rayEXTENSIVE AIR-SHOWERSSURFACE DETECTORCosmic RayPionmuon0103 physical sciencesNeutrino010306 general physicsCosmic raysPierre Auger ObservatoryMuon010308 nuclear & particles physicsFísicaand other elementary particlesUltra-high energy cosmic raysPERFORMANCECosmic rayneutrino flavor; air showers; surface detector; observatory; atmosphere; Auger; cosmic radiation; energy spectrum13. Climate actionHigh Energy Physics::Experiment
researchProduct

Upper limit on the diffuse flux of ultrahigh energy tau neutrinos from the Pierre Auger Observatory

2008

The surface detector array of the Pierre Auger Observatory is sensitive to Earth-skimming tau neutrinos that interact in Earth’s crust. Tau leptons from ντ charged-current interactions can emerge and decay in the atmosphere to produce a nearly horizontal shower with a significant electromagnetic component. The data collected between 1 January 2004 and 31 August 2007 are used to place an upper limit on the diffuse flux of ντ at EeV energies. Assuming an E−2ν differential energy spectrum the limit set at 90% C.L. is E2νdNντdEν<1.3×10−7  GeV cm−2 s−1 sr−1 in the energy range 2×1017 eV<E<2×1019  eV.

[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]FLUORESCENCE DETECTORAstrophysics::High Energy Astrophysical PhenomenaGeneral Physics and AstronomyOsservatorio Pierre AugerCosmic ray7. Clean energy01 natural sciencesNuclear physics[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]PACS: 95.55.Vj 95.85.Ry 98.70.SaPionRaggi cosmicimuonSEARCH0103 physical sciencesNeutrinoEARTHPartículas ElementalesElectromagnetismo010306 general physicsCosmic raysCharged currentCiencias ExactasPierre Auger ObservatoryPhysicsAIR-SHOWERSRange (particle radiation)Muon[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]010308 nuclear & particles physicspionand other elementary particlesFísicaDETETOREScosmic ray detectorsEnergia ultra altaRadiación cósmicaCOSMIC-RAYSand other elementary particle detectors13. Climate actionHigh Energy Physics::ExperimentNeutrinoSciami atmosferici estesiLepton
researchProduct

The effect of the geomagnetic field on cosmic ray energy estimates and large scale anisotropy searches on data from the Pierre Auger Observatory

2011

We present a comprehensive study of the influence of the geomagnetic field on the energy estimation of extensive air showers with a zenith angle smaller than $60^\circ$, detected at the Pierre Auger Observatory. The geomagnetic field induces an azimuthal modulation of the estimated energy of cosmic rays up to the ~2% level at large zenith angles. We present a method to account for this modulation of the reconstructed energy. We analyse the effect of the modulation on large scale anisotropy searches in the arrival direction distributions of cosmic rays. At a given energy, the geomagnetic effect is shown to induce a pseudo-dipolar pattern at the percent level in the declination distribution t…

[PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencescosmic ray experimentCosmic rayAstrophysicsultra high energy cosmic raysEXTENSIVE AIR-SHOWERS01 natural sciencesDeclinationultra high energy cosmic ray0103 physical sciencescosmic rays detectors; cosmic ray experiments; ultra high energy cosmic rayscosmic rays detectorAnisotropyInstrumentation and Methods for Astrophysics (astro-ph.IM)010303 astronomy & astrophysicsZenithParticle detectors.Pierre Auger ObservatoryPhysics010308 nuclear & particles physicsPhysicsOBSERVATÓRIOSAstrophysics::Instrumentation and Methods for AstrophysicsFísicaAstronomy and Astrophysics[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]AzimuthMODELEarth's magnetic fieldPhysics::Space PhysicsLarge detector systems for particle and astroparticle physicARRAYFísica nuclearcosmic rays detectorscosmic ray experimentsAstrophysics - Instrumentation and Methods for AstrophysicsEnergy (signal processing)Cherenkov detectorJournal of Cosmology and Astroparticle Physics
researchProduct

Correlation of the highest-energy cosmic rays with the positions of nearby active galactic nuclei

2008

Data collected by the Pierre Auger Observatory provide evidence for anisotropy in the arrival directions of the cosmic rays with the ighest-energies, which are correlated with the positions of relatively nearby active galactic nuclei (AGN) [Pierre Auger Collaboration, Science 318 (2007) 938]. The correlation has maximum significance for cosmic rays with energy greater than ~6 x 1019 eV and AGN at a distance less than ~75 Mpc. We have confirmed the anisotropy at a confidence level of more than 99% through a test with parameters specified a priori, using an independent data set. The observed correlation is compatible with the hypothesis that cosmic rays with the highest-energies originate fro…

[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]AstronomyOsservatorio Pierre AugerAstrophysicsGALAXY CLUSTER SURVEYAstrophysicsauger01 natural sciencesHigh energy cosmic rayRaggi cosmiciAstrophysical jetGMFObservatoryUltra-high-energy cosmic ray010303 astronomy & astrophysicsPhysicsBL-LACERTAEGreisen–Zatsepin–Kuz’min effect[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]ORIGINUHECRAstrophysics (astro-ph)Settore FIS/01 - Fisica SperimentaleAstrophysics::Instrumentation and Methods for AstrophysicsPierre Auger ObservatoryGZKRadiación cósmicaAnisotropíaCATALOGobservatoryddc:540EGMFCUTOFFComputingMethodologies_DOCUMENTANDTEXTPROCESSINGRELATIVISTIC JETSActive galactic nucleusAstrophysics::High Energy Astrophysical PhenomenaCosmic background radiationFOS: Physical sciencesCosmic rayAstrophysics::Cosmology and Extragalactic AstrophysicsACCELERATION[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]0103 physical sciencesextra-galacticPARTICLESAGNAstrophysics::Galaxy AstrophysicsCiencias ExactasPierre Auger ObservatoryANISOTROPYhigh energy cosmic raysSciami atmosferici010308 nuclear & particles physicsFísicaAstronomyAstronomy and AstrophysicsCENTAURUSGalaxyExperimental High Energy Physics
researchProduct

Gamma-Ray spectral energy in HAWC J1825-134 region

2022

The Earth is bombarded by ultrarelativistic particles, known as cosmic rays (CRs). CRs with energies up to a few PeV (=1015eV), the knee in the particle spectrum, are believed to have a Galactic origin. One or more factories of PeV CRs, or PeVatrons, must thus be active within our Galaxy. The direct detection of PeV protons from their sources is not possible since they are deflected in the Galactic magnetic fields. Hundred TeV {gamma}-rays from decaying {pi}0, produced when PeV CRs collide with the ambient gas, can provide the decisive evidence of proton acceleration up to the knee. Here we report the discovery by the High Altitude Water Cerenkov (HAWC) observatory of the {gamma}-ray source…

observational astronomyAstrophysics and AstronomyGamma-ray astronomyPhysicsGamma ray astronomyNatural SciencesSpectral energy distribution
researchProduct

3rd HAWC cat. of VHE gamma-ray sources (3HWC)

2022

We present a new catalog of TeV gamma-ray sources using 1523 days of data from the High-Altitude Water Cherenkov (HAWC) Observatory. The catalog represents the most sensitive survey of the northern gamma-ray sky at energies above several TeV, with three times the exposure compared to the previous HAWC catalog, 2HWC. We report 65 sources detected at >=5{sigma} significance, along with the positions and spectral fits for each source. The catalog contains eight sources that have no counterpart in the 2HWC catalog, but are within 1{deg} of previously detected TeV emitters, and 20 sources that are more than 1{deg} away from any previously detected TeV source. Of these 20 new sources, 14 have a p…

observational astronomyAstrophysics and AstronomyGamma-ray astronomyPhysicsGamma ray astronomyNatural Sciences
researchProduct

HAWC Gamma-Ray survey, AGNs at TeV photon energies

2022

The High Altitude Water Cherenkov (HAWC) Gamma-Ray Observatory continuously detects TeV photons and particles within its large field of view, accumulating every day a deeper exposure of two-thirds of the sky. We analyzed 1523days of HAWC live data acquired over four and a half years, in a follow-up analysis of 138 nearby (z<0.3) active galactic nuclei from the Third Catalog of Hard Fermi-LAT sources culminating within 40{deg} of the zenith at Sierra Negra, the HAWC site. This search for persistent TeV emission used a maximum- likelihood analysis assuming intrinsic power-law spectra attenuated by pair production of gamma-ray photons with the extragalactic background light. HAWC clearly detec…

observational astronomyActive galactic nucleigalactic and extragalactic astronomyAstrophysics and AstronomyGamma-ray astronomyhigh energy astrophysicsPhysicsGamma ray astronomySurveysNatural Sciences
researchProduct