0000000001170549

AUTHOR

D. Torresi

showing 10 related works from this author

The NUMEN project @ LNS: Status and perspectives

2017

The NUMEN project aims at accessing experimentally driven information on Nuclear Matrix Elements (NME) involved in the half-life of the neutrinoless double beta decay (0νββ), by high-accuracy measurements of Heavy Ion (HI) induced Double Charge Exchange (DCE) reaction cross sections. In particular, the (18O,18Ne) and (20Ne,20O) reactions are used as tools for β+β+ and β−β− decays, respectively. In the experiments, performed at INFN - Laboratory Nazionali del Sud (LNS) in Catania, the beams are accelerated by the Superconducting Cyclotron (CS) and the reaction ejectiles are detected the MAGNEX magnetic spectrometer. The measured cross sections are challengingly low (a few nb), being the tota…

spectroscopyacceleratorspektroskopiaCyclotronnucleus: energyContext (language use)Scintillator[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]7. Clean energy01 natural scienceslaw.inventionNuclear physicsPhysics and Astronomy (all)double-beta decay: (0neutrino)lawDouble beta decay0103 physical sciencescyclotron010306 general physicsPhysicsSpectrometerta114operator: transition010308 nuclear & particles physicscyclotrons nuclear structureNuclear structureradioactive decaysemileptonic decaycross section: measuredmagnetic spectrometercharge exchangecharge exchange reactionsheavy ionUpgradeOrder of magnitudeexperimental results
researchProduct

Recent results on heavy-ion induced reactions of interest for neutrinoless double beta decay at INFN-LNS

2019

Abstract The NUMEN project aims at accessing experimentally driven information on Nuclear Matrix Elements (NME) involved in the half-life of the neutrinoless double beta decay (0νββ). In this view measurements of Heavy Ion (HI) induced Double Charge Exchange (DCE) reaction cross sections are performed with high-accuracy. In particular, the (18O,18Ne) and (20Ne,20O) reactions are used as tools for β+β+ and β-β- decays, respectively. In the experiments, performed at INFN - Laboratory Nazionali del Sud (LNS) in Catania, the beams are accelerated by the Superconducting Cyclotron (CS) and the reaction ejectiles are detected the MAGNEX magnetic spectrometer. The measured cross sections are challe…

Historyexperimental methodsheavy ion: scatteringQC1-999heavy ion: charge exchange[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]hiukkasfysiikka7. Clean energy01 natural sciencesEducationNuclear physicsdouble-beta decay: (0neutrino)Double beta decay0103 physical sciencesneutrino: mass010306 general physicsnucleus: semileptonic decayPhysics010308 nuclear & particles physicsPhysicsparticle: MajoranaNuclear structurecross section: measuredSpecial classmagnetic spectrometercharge exchangedetector: upgradeneon: nuclideComputer Science Applicationsheavy ion induced double charge exchange reactionsneutrino: MajoranaHeavy ionenergy resolution: highydinfysiikkaCharge exchangeexperimental resultsEPJ Web of Conferences
researchProduct

Recent results on heavy-ion direct reactions of interest for 0νββ decay at INFN - LNS

2020

Abstract Neutrinoless double beta decay of nuclei, if observed, would have important implications on fundamental physics. In particular it would give access to the effective neutrino mass. In order to extract such information from 0νββ decay half-life measurements, the knowledge of the Nuclear Matrix Elements (NME) is of utmost importance. In this context the NUMEN and the NURE projects aim to extract information on the NME by measuring cross sections of Double Charge Exchange reactions in selected systems which are expected to spontaneously decay via 0νββ. In this work an overview of the experimental challenges that NUMEN is facing in order to perform the experiments with accelerated beams…

Physicsnucleus: semileptonic decayHistoryparticle: Majoranahiukkasfysiikkacross section: measured[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]charge exchangemagnetic spectrometerComputer Science ApplicationsEducationNuclear physicsdouble-beta decay: (0neutrino)Heavy ionupgradeneutrino: massenergy resolution: highydinfysiikkabeam: heavy ionexperimental resultsJournal of Physics: Conference Series
researchProduct

New Results from the NUMEN Project

2018

International audience; NUMEN aims at accessing experimentally driven information on Nuclear Matrix Elements (NME) involved in the half-life of the neutrinoless double beta decay (0νββ), by high-accuracy measurements of the cross sections of Heavy Ion (HI) induced Double Charge Exchange (DCE) reactions. First evidence about the possibility to get quantitative information about NME from experiments is found for the (^18O,^18Ne) and (^20Ne,^20O) reactions. Moreover, to infer the neutrino average masses from the possible measurement of the half-life of 0νββ decay, the knowledge of the NME is a crucial aspect. The key tools for this project are the high resolution Superconducting Cyclotron beam…

Semileptonic decayheavy ion: scatteringCyclotronContext (language use)[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]7. Clean energy01 natural scienceslaw.inventionNuclear physicsdouble-beta decay: (0neutrino)lawDouble beta decay0103 physical sciencescyclotron010306 general physicsPhysicsnucleus: semileptonic decaySpectrometer010308 nuclear & particles physicsresolutioncross section: measuredmagnetic spectrometercharge exchangeUpgradeupgradeNeutrinoOrder of magnitudeexperimental results
researchProduct

Recent results on Heavy-Ion induced reactions of interest for 0νββ decay

2019

An updated overview of recent results on Heavy-Ion induced reactions of interest for neutrinoless double beta decay is reported in the framework of the NUMEN project. The NUMEN idea is to study heavy-ion induced Double Charge Exchange (DCE) reactions with the aim to get information on the nuclear matrix elements for neutrinoless double beta (0νββ) decay. Moreover, to infer the neutrino average masses from the possible measurement of the half- life of 0νββ decay, the knowledge of the nuclear matrix elements is a crucial aspect. Uma visão geral atualizada dos resultados recentes sobre reações induzidas por íons pesados ​​de interesse para o decaimento beta duplo sem neutrinos é relatada na es…

Historymeasurement methodsnuclear matrix elements[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]heavy-ion induced Double Charge Exchange; nuclear matrix elements; neutrinoless double beta decay01 natural sciencesneutrinoless double beta decayEducationNuclear physicsoxygen: nuclidedouble-beta decay: (0neutrino)Double beta decay0103 physical sciencesBeta (velocity)neutrino: mass010306 general physicsNuclear ExperimentPhysicsnucleus: semileptonic decayMeasurement methodoperator: transition010308 nuclear & particles physicsHigh Energy Physics::Phenomenologyparticle: Majoranacharge exchangemagnetic spectrometerBeta decayheavy ionComputer Science Applicationsneon: nuclideheavy-ion induced Double Charge ExchangeHeavy ionHigh Energy Physics::ExperimentNeutrinoCharge exchange
researchProduct

Measuring nuclear reaction cross sections to extract information on neutrinoless double beta decay

2017

Neutrinoless double beta decay (0v\b{eta}\b{eta}) is considered the best potential resource to access the absolute neutrino mass scale. Moreover, if observed, it will signal that neutrinos are their own anti-particles (Majorana particles). Presently, this physics case is one of the most important research "beyond Standard Model" and might guide the way towards a Grand Unified Theory of fundamental interactions. Since the 0v\b{eta}\b{eta} decay process involves nuclei, its analysis necessarily implies nuclear structure issues. In the NURE project, supported by a Starting Grant of the European Research Council (ERC), nuclear reactions of double charge-exchange (DCE) are used as a tool to extr…

double-beta decay: neutrinolessNuclear reactionHistoryParticle physicsdouble beta decayFOS: Physical sciencesnucleus: structure function[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]nuclear reaction7. Clean energy01 natural sciencesQUADRUPOLE MAGNETSEducationStandard Modelnucleus: productionPhysics and Astronomy (all)mass: scaleydinreaktiotFIELD MEASUREMENTdouble-beta decay: (0neutrino)Double beta decay0103 physical sciencesGrand Unified Theorystructureneutrino: massNuclear Experiment (nucl-ex)Nuclear Experiment010306 general physicsDETECTORNuclear ExperimentPhysicsoperator: transition010308 nuclear & particles physicsparticle: MajoranaOrder (ring theory)semileptonic decaycharge exchangeantiparticleComputer Science ApplicationsMAGNEX SPECTROMETER* Automatic Keywords *MAJORANAgrand unified theoryMAGNEX SPECTROMETER QUADRUPOLE MAGNETS FIELD MEASUREMENT DETECTOR.upgradeHigh Energy Physics::ExperimentProduction (computer science)NeutrinoJournal of Physics: Conference Series
researchProduct

Correlation of the highest-energy cosmic rays with nearby extragalactic objects.

2007

Using data collected at the Pierre Auger Observatory during the past 3.7 years, we demonstrated a correlation between the arrival directions of cosmic rays with energy above ~ 6x10^{19} electron volts and the positions of active galactic nuclei (AGN) lying within ~ 75 megaparsecs. We rejected the hypothesis of an isotropic distribution of these cosmic rays with at least a 99% confidence level from a prescribed a priori test. The correlation we observed is compatible with the hypothesis that the highest energy particles originate from nearby extragalactic sources whose flux has not been substantially reduced by interaction with the cosmic background radiation. AGN or objects having a similar…

Active galactic nucleus[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]AstronomyAstrophysics::High Energy Astrophysical Phenomenaparticle source [cosmic radiation]Cosmic background radiationFOS: Physical sciencesFluxOsservatorio Pierre AugerCosmic rayanisotropyAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics01 natural sciences[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]Raggi cosmici0103 physical sciencesUltra-high-energy cosmic ray010303 astronomy & astrophysicsBackground radiationNuclei galattivi attiviPhysicsPierre Auger ObservatorySPECTRUMMultidisciplinary[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]010308 nuclear & particles physicsMedicine (all); MultidisciplinaryMedicine (all)Settore FIS/01 - Fisica SperimentaleAstrophysics (astro-ph)angular dependence [cosmic radiation]Astrophysics::Instrumentation and Methods for AstrophysicsFísicaEnergia ultra altaExperimental High Energy Physicsddc:500Energy (signal processing)experimental results
researchProduct

Upper limit on the diffuse flux of ultrahigh energy tau neutrinos from the Pierre Auger Observatory

2008

The surface detector array of the Pierre Auger Observatory is sensitive to Earth-skimming tau neutrinos that interact in Earth’s crust. Tau leptons from ντ charged-current interactions can emerge and decay in the atmosphere to produce a nearly horizontal shower with a significant electromagnetic component. The data collected between 1 January 2004 and 31 August 2007 are used to place an upper limit on the diffuse flux of ντ at EeV energies. Assuming an E−2ν differential energy spectrum the limit set at 90% C.L. is E2νdNντdEν<1.3×10−7  GeV cm−2 s−1 sr−1 in the energy range 2×1017 eV<E<2×1019  eV.

[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]FLUORESCENCE DETECTORAstrophysics::High Energy Astrophysical PhenomenaGeneral Physics and AstronomyOsservatorio Pierre AugerCosmic ray7. Clean energy01 natural sciencesNuclear physics[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]PACS: 95.55.Vj 95.85.Ry 98.70.SaPionRaggi cosmicimuonSEARCH0103 physical sciencesNeutrinoEARTHPartículas ElementalesElectromagnetismo010306 general physicsCosmic raysCharged currentCiencias ExactasPierre Auger ObservatoryPhysicsAIR-SHOWERSRange (particle radiation)Muon[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]010308 nuclear & particles physicspionand other elementary particlesFísicaDETETOREScosmic ray detectorsEnergia ultra altaRadiación cósmicaCOSMIC-RAYSand other elementary particle detectors13. Climate actionHigh Energy Physics::ExperimentNeutrinoSciami atmosferici estesiLepton
researchProduct

NURE: An ERC project to study nuclear reactions for neutrinoless double beta decay

2017

Neutrinoless double beta decay (0{\nu}\b{eta}\b{eta}) is considered the best potential resource to determine the absolute neutrino mass scale. Moreover, if observed, it will signal that the total lepton number is not conserved and neutrinos are their own anti-particles. Presently, this physics case is one of the most important research beyond Standard Model and might guide the way towards a Grand Unified Theory of fundamental interactions. Since the \b{eta}\b{eta} decay process involves nuclei, its analysis necessarily implies nuclear structure issues. The 0{\nu}\b{eta}\b{eta} decay rate can be expressed as a product of independent factors: the phase-space factors, the nuclear matrix elemen…

Semileptonic decayNuclear reactionPhysicsParticle physicsNuclear structureFOS: Physical sciences01 natural sciences7. Clean energyLepton numberStandard ModelydinreaktiotDouble beta decay0103 physical sciencesGrand Unified TheoryNuclear Physics and astrophysicsHigh Energy Physics::ExperimentNeutrinoNuclear Experiment (nucl-ex)010306 general physicsydinfysiikkaNuclear Experiment010303 astronomy & astrophysicsNuclear Experiment
researchProduct

Upper limit on the cosmic-ray photon flux above 1019 eV using the surface detector of the Pierre Auger Observatory

2008

A method is developed to search for air showers initiated by photons using data recorded by the surface detector of the Auger Observatory. The approach is based on observables sensitive to the longitudinal shower development, the signal risetime and the curvature of the shower front. Applying this method to the data, upper limits on the flux of photons of 3.8 x 10-3, 2.5 x 10-3; and 2.2 x 10-3 km-2 sr-1 yr-1 above 1019 eV, 2 x 1019 eV; and 4 x 1019 eV are derived, with corresponding limits on the fraction of photons being 2.0%, 5.1%, and 31% (all limits at 95% c.l.). These photon limits disfavor certain exotic models of sources of cosmic rays. The results also show that the approach adopted…

Photon[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]AstronomyFluxFOS: Physical sciencesOsservatorio Pierre AugerCosmic rayFotonesAstrophysicsAstrophysics7. Clean energy01 natural sciencesAugerNuclear physics[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]High Energy Physics - Phenomenology (hep-ph)Raggi cosmiciultra high energy photonsCascada atmosféricaObservatory0103 physical sciences010306 general physicsCiencias ExactasPierre Auger ObservatoryPhysics[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]010308 nuclear & particles physicsAstrophysics (astro-ph)FísicaAstronomy and AstrophysicsPierre Auger ObservatoryEnergia ultra altaCosmic rayHigh Energy Physics - PhenomenologyPair production13. Climate actionFotoniExperimental High Energy Physicsddc:540flux upper limitNeutrinoSciami atmosferici estesi
researchProduct